このアイテムのアクセス数: 82
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2235-09.pdf | 9.28 MB | Adobe PDF | 見る/開く |
タイトル: | THE CLOSURE PROPERTY OF THE FOKKER-PLANCK EQUATION, GAUSSIAN HYPERCONTRACTIVTY, AND LOGARITHMIC SOBOLEV INEQUALITIES (Mathematical aspects of quantum fields and related topics) |
著者: | NAKAMURA, SHOHEI |
著者名の別形: | 中村, 昌平 |
キーワード: | 26D10 47D07 52A40 35K05 60J60 Hypercontractivity /logarithmic Sobolev inequality Fokker-Planck equation |
発行日: | Dec-2022 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2235 |
開始ページ: | 103 |
終了ページ: | 117 |
抄録: | An importance of functional inequalities can be usually seen by being applied to analysis of differential equations. In this report, we explain an idea reversing such understanding, namely applying properties of differential equations to analyze functional inequalities. This idea is motivated from the work on the theory of Brascamp-Lieb inequality due to Bennett-Carbery-Christ- Tao [5] and Carlen-Lieb-Loss [9]. More precisely, we report that one can improve the best constant of Nelson's hypercontractivity inequality and Grass's logarithmic Sobolev inequality via the regularizing property of the Fokker-Planck equation, which is the main result in the work with Bez and Tsuji [7]. |
URI: | http://hdl.handle.net/2433/282938 |
出現コレクション: | 2235 量子場の数理とその周辺 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。