このアイテムのアクセス数: 168
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.iass.2022.016.pdf | 772.38 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Hayashi, Kazuki | en |
dc.contributor.author | Ohsaki, Makoto | en |
dc.contributor.author | Kotera, Masaya | en |
dc.contributor.alternative | 林, 和希 | ja |
dc.contributor.alternative | 大﨑, 純 | ja |
dc.contributor.alternative | 小寺, 正也 | ja |
dc.date.accessioned | 2023-06-20T01:16:26Z | - |
dc.date.available | 2023-06-20T01:16:26Z | - |
dc.date.issued | 2022-12-01 | - |
dc.identifier.uri | http://hdl.handle.net/2433/283358 | - |
dc.description.abstract | We consider a truss as a graph consisting of nodes and edges, and combine graph embedding (GE) and reinforcement learning (RL) to develop an agent for generating a stable assembly path for a truss with arbitrary configuration. GE is a method of embedding the features of a graph into a vector space. By using GE, the agent can obtain numerical information on neighboring members and nodes considering their connectivity. Since the stability of a structure is strongly affected by the relative positions of members and nodes, feature extraction by GE should be effective in considering the stability of a truss. The proposed method not only can train agents using trusses with arbitrary connectivity but also can apply trained agents to trusses with arbitrary connectivity, ensuring the versatility of the trained agents' applicability. In the numerical examples, the trained agents are verified to find rational assembly sequences for various trusses more than 1000 times faster than metaheuristic approaches. The trained agent is further implemented as a user-friendly component compatible with 3D modeling software. | en |
dc.language.iso | eng | - |
dc.publisher | International Association for Shell and Spatial Structures (IASS) | en |
dc.rights | Copyright © 2022 by Kazuki Hayashi, Makoto Ohsaki and Masaya Kotera | en |
dc.rights | The full-text file will be made open to the public on 1 December 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.subject | ASSEMBLY SEQUENCE OPTIMIZATION | en |
dc.subject | GRAPH EMBEDDING | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | REINFORCEMENT LEARNING | en |
dc.subject | TRUSS | en |
dc.title | Assembly sequence optimization of spatial trusses using graph embedding and reinforcement learning | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Journal of International Association for Shell and Spatial Structures | en |
dc.identifier.volume | 63 | - |
dc.identifier.issue | 214 | - |
dc.identifier.spage | 232 | - |
dc.identifier.epage | 240 | - |
dc.relation.doi | 10.20898/j.iass.2022.016 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
datacite.date.available | 2023-12-01 | - |
datacite.awardNumber | 20H04467 | - |
datacite.awardNumber | 21K20461 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H04467/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K20461/ | - |
dc.identifier.pissn | 1028-365X | - |
dc.identifier.eissn | 1996-9015 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 創造性の論理的・ 技術的探求に基づくデザイン共創環境の構築と教育プログラムの開発 | ja |
jpcoar.awardTitle | 離散構造物の最適設計に向けたグラフ埋め込みと機械学習の複合手法の開発 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。