このアイテムのアクセス数: 179
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
pdp59025.2023.00031.pdf | 584.13 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Yasudo, Ryota | en |
dc.contributor.alternative | 安戸, 僚汰 | ja |
dc.date.accessioned | 2023-07-06T06:57:57Z | - |
dc.date.available | 2023-07-06T06:57:57Z | - |
dc.date.issued | 2023-03 | - |
dc.identifier.isbn | 9798350337631 | - |
dc.identifier.uri | http://hdl.handle.net/2433/284024 | - |
dc.description | 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 01-03 March 2023, Naples, Italy. | en |
dc.description.abstract | This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which have recently attracted attention as a solver for a wide range of combinatorial optimization problems. In particular, we introduce a novel approach called the bandit-based variable fixing (BVF). The key idea behind BVF is to regard an execution of an arbitrary metaheuristic with a variable fixed as a play of a slot machine. Thus, BVF explores variables to fix with the maximum expected reward, and executes a metaheuristic at the same time. The bandit-based approach is then extended to fix multiple variables. To accelerate solving multi-armed bandit problem, we implement a parallel algorithm for BVF on a GPU. Our results suggest that our proposed BVF enhances original metaheuristics. | en |
dc.language.iso | eng | - |
dc.publisher | IEEE | en |
dc.rights | © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en |
dc.rights | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | en |
dc.subject | quadratic unconstrained binary optimization | en |
dc.subject | GPGPU | en |
dc.subject | multi-armed bandit problem | en |
dc.subject | decision making | en |
dc.title | Bandit-based Variable Fixing for Binary Optimization on GPU Parallel Computing | en |
dc.type | conference paper | - |
dc.type.niitype | Conference Paper | - |
dc.identifier.jtitle | 2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) | en |
dc.relation.doi | 10.1109/pdp59025.2023.00031 | - |
dc.textversion | author | - |
dc.identifier.artnum | 23239615 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 22H05193 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-22H05193/ | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 極限光技術を生かすフォトニック近似コンピューティング | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。