ダウンロード数: 48

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
RIMS1975.pdf221.1 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTSUJIMURA, Shotaen
dc.date.accessioned2023-07-26T05:20:08Z-
dc.date.available2023-07-26T05:20:08Z-
dc.date.issued2023-07-
dc.identifier.urihttp://hdl.handle.net/2433/284475-
dc.description.abstractLet p be a prime number. In the present paper, from the viewpoint of the compatibility/rigidity of group-theoretic cyclotomes, we revisit the anabelian Grothendieck Conjecture for hyperbolic curves over finitely generated fields of characteristic p established by A. Tamagawa, J. Stix, and S. Mochizuki. Especially, we give an alternative proof of the Grothendieck Conjecture for nonisotrivial hyperbolic curves over finitely generated fields of characteristic p obtained by J. Stix. In fact, by applying relatively recent results in anabelian geometry for hyperbolic curves over finite fields developed by M. Saïdi and A. Tamagawa, we discuss the J. Stix's result in a certain generalized situation, i.e., the geometrically pro-Σ setting, where Σ denotes the complement of a finite set of prime numbers that contains p in the set of all prime numbers. Moreover, by combining with a theorem in birational anabelian geometry obtained by F. Pop, we prove an absolute version of the geometrically pro-Σ Grothendieck Conjecture for nonisotrivial hyperbolic curves over the perfections of finitely generated fields of characteristic p. On the other hand, in the present paper, we also establish certain isotriviality criteria for hyperbolic curves with respect to both l-adic Galois representations and pro-l outer Galois representations, where l is a prime number ≠ p. These isotriviality criteria may be applied to give an alternative proof of the J. Stix's result.en
dc.language.isoeng-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.subject14H30en
dc.subject14G17en
dc.subjectanabelian geometryen
dc.subjectGrothendieck Conjectureen
dc.subjecthyperbolic curveen
dc.subjectfinitely generated fielden
dc.subjectpositive characteristicen
dc.subjectisotrivialityen
dc.subject.ndc410-
dc.titleGrothendieck Conjecture for Hyperbolic Curves over Finitely Generated Fields of Positive Characteristic via Compatibility of Cyclotomesen
dc.typeother-
dc.type.niitypePreprint-
dc.identifier.spage1-
dc.identifier.epage30-
dc.textversionauthor-
dc.identifier.artnumRIMS-1975-
dc.sortkey1975-
dc.addressResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.relation.urlhttps://www.kurims.kyoto-u.ac.jp/preprint/index.html-
dcterms.accessRightsopen access-
出現コレクション:数理解析研究所プレプリント

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。