このアイテムのアクセス数: 164

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ije_dyad037.pdf809.83 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorInoue, Kosukeen
dc.contributor.authorAthey, Susanen
dc.contributor.authorTsugawa, Yusukeen
dc.contributor.alternative井上, 浩輔ja
dc.contributor.alternative津川, 友介ja
dc.date.accessioned2023-08-04T09:27:55Z-
dc.date.available2023-08-04T09:27:55Z-
dc.date.issued2023-08-
dc.identifier.urihttp://hdl.handle.net/2433/284582-
dc.description高血圧診療における次世代の個別化医療戦略を提唱 --機械学習により個人の治療効果を予測する時代へ--. 京都大学プレスリリース. 2023-04-05.ja
dc.description.abstract[Background] In medicine, clinicians treat individuals under an implicit assumption that high-risk patients would benefit most from the treatment (‘high-risk approach’). However, treating individuals with the highest estimated benefit using a novel machine-learning method (‘high-benefit approach’) may improve population health outcomes. [Methods] This study included 10 672 participants who were randomized to systolic blood pressure (SBP) target of either <120 mmHg (intensive treatment) or <140 mmHg (standard treatment) from two randomized controlled trials (Systolic Blood Pressure Intervention Trial, and Action to Control Cardiovascular Risk in Diabetes Blood Pressure). We applied the machine-learning causal forest to develop a prediction model of individualized treatment effect (ITE) of intensive SBP control on the reduction in cardiovascular outcomes at 3 years. We then compared the performance of high-benefit approach (treating individuals with ITE >0) versus the high-risk approach (treating individuals with SBP ≥130 mmHg). Using transportability formula, we also estimated the effect of these approaches among 14 575 US adults from National Health and Nutrition Examination Surveys (NHANES) 1999–2018. [Results] We found that 78.9% of individuals with SBP ≥130 mmHg benefited from the intensive SBP control. The high-benefit approach outperformed the high-risk approach [average treatment effect (95% CI), +9.36 (8.33–10.44) vs +1.65 (0.36–2.84) percentage point; difference between these two approaches, +7.71 (6.79–8.67) percentage points, P-value <0.001]. The results were consistent when we transported the results to the NHANES data. [Conclusions] The machine-learning-based high-benefit approach outperformed the high-risk approach with a larger treatment effect. These findings indicate that the high-benefit approach has the potential to maximize the effectiveness of treatment rather than the conventional high-risk approach, which needs to be validated in future research.en
dc.language.isoeng-
dc.publisherOxford University Press (OUP)en
dc.rights© The Author(s) 2023. Published by Oxford University Press on behalf of the International Epidemiological Association.en
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence, which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectCausal foresten
dc.subjecthigh-benefit approachen
dc.subjectheterogeneous treatment effecten
dc.subjectblood pressureen
dc.subjectcardiovascular eventsen
dc.titleMachine-learning-based high-benefit approach versus conventional high-risk approach in blood pressure managementen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleInternational Journal of Epidemiologyen
dc.identifier.volume52-
dc.identifier.issue4-
dc.identifier.spage1243-
dc.identifier.epage1256-
dc.relation.doi10.1093/ije/dyad037-
dc.textversionpublisher-
dc.addressDepartment of Social Epidemiology, Graduate School of Medicine, Kyoto Universityen
dc.addressGraduate School of Business, Stanford Universityen
dc.addressDivision of General Internal Medicine and Health Services Research, David Geffen School of Medicine at UCLA, Los Angeles; Department of Health Policy and Management, UCLA Fielding School of Public Health, Los Angelesen
dc.identifier.pmid37013846-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2023-04-05-
dcterms.accessRightsopen access-
datacite.awardNumber21K20900-
datacite.awardNumber22K17392-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K20900/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K17392/-
dc.identifier.pissn0300-5771-
dc.identifier.eissn1464-3685-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle厳格な降圧管理が心血管予防に効果的である集団の同定と、一般集団への介入効果の検討ja
jpcoar.awardTitle糖尿病を介して心血管疾患を引き起こす社会決定要因の同定と、そのメカニズムの解明ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons