このアイテムのアクセス数: 164
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ije_dyad037.pdf | 809.83 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Inoue, Kosuke | en |
dc.contributor.author | Athey, Susan | en |
dc.contributor.author | Tsugawa, Yusuke | en |
dc.contributor.alternative | 井上, 浩輔 | ja |
dc.contributor.alternative | 津川, 友介 | ja |
dc.date.accessioned | 2023-08-04T09:27:55Z | - |
dc.date.available | 2023-08-04T09:27:55Z | - |
dc.date.issued | 2023-08 | - |
dc.identifier.uri | http://hdl.handle.net/2433/284582 | - |
dc.description | 高血圧診療における次世代の個別化医療戦略を提唱 --機械学習により個人の治療効果を予測する時代へ--. 京都大学プレスリリース. 2023-04-05. | ja |
dc.description.abstract | [Background] In medicine, clinicians treat individuals under an implicit assumption that high-risk patients would benefit most from the treatment (‘high-risk approach’). However, treating individuals with the highest estimated benefit using a novel machine-learning method (‘high-benefit approach’) may improve population health outcomes. [Methods] This study included 10 672 participants who were randomized to systolic blood pressure (SBP) target of either <120 mmHg (intensive treatment) or <140 mmHg (standard treatment) from two randomized controlled trials (Systolic Blood Pressure Intervention Trial, and Action to Control Cardiovascular Risk in Diabetes Blood Pressure). We applied the machine-learning causal forest to develop a prediction model of individualized treatment effect (ITE) of intensive SBP control on the reduction in cardiovascular outcomes at 3 years. We then compared the performance of high-benefit approach (treating individuals with ITE >0) versus the high-risk approach (treating individuals with SBP ≥130 mmHg). Using transportability formula, we also estimated the effect of these approaches among 14 575 US adults from National Health and Nutrition Examination Surveys (NHANES) 1999–2018. [Results] We found that 78.9% of individuals with SBP ≥130 mmHg benefited from the intensive SBP control. The high-benefit approach outperformed the high-risk approach [average treatment effect (95% CI), +9.36 (8.33–10.44) vs +1.65 (0.36–2.84) percentage point; difference between these two approaches, +7.71 (6.79–8.67) percentage points, P-value <0.001]. The results were consistent when we transported the results to the NHANES data. [Conclusions] The machine-learning-based high-benefit approach outperformed the high-risk approach with a larger treatment effect. These findings indicate that the high-benefit approach has the potential to maximize the effectiveness of treatment rather than the conventional high-risk approach, which needs to be validated in future research. | en |
dc.language.iso | eng | - |
dc.publisher | Oxford University Press (OUP) | en |
dc.rights | © The Author(s) 2023. Published by Oxford University Press on behalf of the International Epidemiological Association. | en |
dc.rights | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence, which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Causal forest | en |
dc.subject | high-benefit approach | en |
dc.subject | heterogeneous treatment effect | en |
dc.subject | blood pressure | en |
dc.subject | cardiovascular events | en |
dc.title | Machine-learning-based high-benefit approach versus conventional high-risk approach in blood pressure management | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | International Journal of Epidemiology | en |
dc.identifier.volume | 52 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 1243 | - |
dc.identifier.epage | 1256 | - |
dc.relation.doi | 10.1093/ije/dyad037 | - |
dc.textversion | publisher | - |
dc.address | Department of Social Epidemiology, Graduate School of Medicine, Kyoto University | en |
dc.address | Graduate School of Business, Stanford University | en |
dc.address | Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at UCLA, Los Angeles; Department of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles | en |
dc.identifier.pmid | 37013846 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2023-04-05 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 21K20900 | - |
datacite.awardNumber | 22K17392 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K20900/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K17392/ | - |
dc.identifier.pissn | 0300-5771 | - |
dc.identifier.eissn | 1464-3685 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 厳格な降圧管理が心血管予防に効果的である集団の同定と、一般集団への介入効果の検討 | ja |
jpcoar.awardTitle | 糖尿病を介して心血管疾患を引き起こす社会決定要因の同定と、そのメカニズムの解明 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス