このアイテムのアクセス数: 121

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
acs.jcim.3c00269.pdf2.72 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKoyama, Takutoen
dc.contributor.authorMatsumoto, Shigeyukien
dc.contributor.authorIwata, Hiroakien
dc.contributor.authorKojima, Ryosukeen
dc.contributor.authorOkuno, Yasushien
dc.contributor.alternative小山, 拓豊ja
dc.contributor.alternative松本, 篤幸ja
dc.contributor.alternative岩田, 浩明ja
dc.contributor.alternative小島, 諒介ja
dc.contributor.alternative奥野, 恭史ja
dc.date.accessioned2023-09-13T05:11:08Z-
dc.date.available2023-09-13T05:11:08Z-
dc.date.issued2023-08-14-
dc.identifier.urihttp://hdl.handle.net/2433/285076-
dc.description.abstractIdentifying compound-protein interactions (CPIs) is crucial for drug discovery. Since experimentally validating CPIs is often time-consuming and costly, computational approaches are expected to facilitate the process. Rapid growths of available CPI databases have accelerated the development of many machine-learning methods for CPI predictions. However, their performance, particularly their generalizability against external data, often suffers from a data imbalance attributed to the lack of experimentally validated inactive (negative) samples. In this study, we developed a self-training method for augmenting both credible and informative negative samples to improve the performance of models impaired by data imbalances. The constructed model demonstrated higher performance than those constructed with other conventional methods for solving data imbalances, and the improvement was prominent for external datasets. Moreover, examination of the prediction score thresholds for pseudo-labeling during self-training revealed that augmenting the samples with ambiguous prediction scores is beneficial for constructing a model with high generalizability. The present study provides guidelines for improving CPI predictions on real-world data, thus facilitating drug discovery.en
dc.language.isoeng-
dc.publisherAmerican Chemical Society (ACS)en
dc.rights© 2022 The Authors. Published by American Chemical Societyen
dc.rightsThis publication is licensed under CC-BY-NC-ND 4.0.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectAlgorithmsen
dc.subjectDrug discoveryen
dc.subjectPeptides and proteinsen
dc.subjectReceptorsen
dc.subjectStudentsen
dc.titleImproving Compound–Protein Interaction Prediction by Self-Training with Augmenting Negative Samplesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Chemical Information and Modelingen
dc.identifier.volume63-
dc.identifier.issue15-
dc.identifier.spage4552-
dc.identifier.epage4559-
dc.relation.doi10.1021/acs.jcim.3c00269-
dc.textversionpublisher-
dc.identifier.pmid37460105-
dcterms.accessRightsopen access-
datacite.awardNumber20K12063-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K12063/-
dc.identifier.pissn1549-9596-
dc.identifier.eissn1549-960X-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle苦味受容体におけるAI・シミュレーション・進化解析の融合解析フレームワークの構築ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons