このアイテムのアクセス数: 121

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s43705-023-00308-7.pdf2.76 MBAdobe PDF見る/開く
タイトル: Predicting global distributions of eukaryotic plankton communities from satellite data
著者: Kaneko, Hiroto
Endo, Hisashi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-0016-1624 (unconfirmed)
Henry, Nicolas
Berney, Cédric
Mahé, Frédéric
Poulain, Julie
Labadie, Karine
Beluche, Odette
El Hourany, Roy
Tara Oceans Coordinators
Chaffron, Samuel
Wincker, Patrick
Nakamura, Ryosuke
Karp-Boss, Lee
Boss, Emmanuel
Bowler, Chris
de Vargas, Colomban
Tomii, Kentaro
Ogata, Hiroyuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-6594-377X (unconfirmed)
著者名の別形: 金子, 博人
遠藤, 寿
中村, 良介
富井, 健太郎
緒方, 博之
キーワード: Biooceanography
Microbial ecology
発行日: 22-Sep-2023
出版者: Springer Nature
誌名: ISME Communications
巻: 3
論文番号: 101
抄録: Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.
記述: プランクトンを宇宙から観測する --衛星データを入力データとする海洋真核微生物群集予測モデルの開発--. 京都大学プレスリリース. 2023-10-19.
著作権等: © The Author(s) 2023
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
URI: http://hdl.handle.net/2433/285532
DOI(出版社版): 10.1038/s43705-023-00308-7
PubMed ID: 37740029
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2023-10-19-2
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons