ダウンロード数: 36

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
acscatal.3c03769.pdf6.17 MBAdobe PDF見る/開く
タイトル: Essential Insight of Direct Electron Transfer-Type Bioelectrocatalysis by Membrane-Bound d-Fructose Dehydrogenase with Structural Bioelectrochemistry
著者: Suzuki, Yohei
Makino, Fumiaki
Miyata, Tomoko
Tanaka, Hideaki
Namba, Keiichi
Kano, Kenji
Sowa, Keisei  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-9767-4922 (unconfirmed)
Kitazumi, Yuki  kyouindb  KAKEN_id
Shirai, Osamu
著者名の別形: 鈴木, 洋平
牧野, 文信
宮田, 知子
田中, 秀明
難波, 啓一
加納, 健司
宋和, 慶盛
北隅, 優希
白井, 理
キーワード: bioelectrocatalysis
direct electron transfer
cryo-electron microscopy
membrane-bound d-fructose dehydrogenase
intramolecular electron transfer
発行日: 20-Oct-2023
出版者: American Chemical Society (ACS)
誌名: ACS Catalysis
巻: 13
号: 20
開始ページ: 13828
終了ページ: 13837
抄録: Flavin adenine dinucleotide-dependent d-fructose dehydrogenase (FDH) from Gluconobacter japonicus NBRC3260, a membrane-bound heterotrimeric flavohemoprotein capable of direct electron transfer (DET)-type bioelectrocatalysis, was investigated from the perspective of structural biology, bioelectrochemistry, and protein engineering. DET-type reactions offer several benefits in biomimetics (e.g., biofuel cells, bioreactors, and biosensors) owing to their mediator-less configuration. FDH provides an intense DET-type catalytic signal; therefore, extensive research has been conducted on the fundamental principles and applications of biosensors. Structural analysis using cryo-electron microscopy and single-particle analysis has revealed the entire FDH structures with resolutions of 2.5 and 2.7 Å for the reduced and oxidized forms, respectively. The electron transfer (ET) pathway during the catalytic oxidation of d-fructose was investigated by using both thermodynamic and kinetic approaches. Structural analysis has shown the localization of the electrostatic surface charges around heme 2c in subunit II, and experiments using functionalized electrodes with a controlled surface charge support the notion that heme 2c is the electrode-active site. Furthermore, two aromatic amino acid residues (Trp427 and Phe489) were located in a possible long-range ET pathway between heme 2c and the electrode. Two variants (W427A and F489A) were obtained by site-directed mutagenesis, and their effects on DET-type activity were elucidated. The results have shown that Trp427 plays an essential role in accelerating long-range ET and triples the standard rate constant of heterogeneous ET according to bioelectrochemical analysis.
記述: 電極を基質認識できる酵素の反応メカニズムを解明 --次世代バイオセンシングにつながる基盤技術--. 京都大学プレスリリース. 2023-10-16.
著作権等: © 2023 The Authors. Published by American Chemical Society.
This publication is licensed under CC-BY-NC-ND 4.0.
URI: http://hdl.handle.net/2433/285571
DOI(出版社版): 10.1021/acscatal.3c03769
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2023-10-16
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons