このアイテムのアクセス数: 239
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
00207179.2020.1798019.pdf | 2.25 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Deng, Haoyang | en |
dc.contributor.author | Ohtsuka, Toshiyuki | en |
dc.contributor.alternative | 鄧, 昊洋 | ja |
dc.contributor.alternative | 大塚, 敏之 | ja |
dc.date.accessioned | 2023-12-07T07:32:55Z | - |
dc.date.available | 2023-12-07T07:32:55Z | - |
dc.date.issued | 2022-02 | - |
dc.identifier.uri | http://hdl.handle.net/2433/286316 | - |
dc.description.abstract | Real-time optimisation for nonlinear model predictive control (NMPC) has always been challenging, especially for fast-sampling and large-scale applications. This paper presents an efficient implementation of a highly parallelisable method for NMPC, called ParNMPC. The implementation details of ParNMPC are introduced, including a dedicated discretisation method suitable for parallelisation, a framework that unifies search direction calculation done using Newton's method and the parallel method, line search methods for guaranteeing convergence, and a warm start strategy for the interior-point method. To assess the performance of ParNMPC under different configurations, three experiments including a closed-loop simulation of a quadrotor, a real-world control example of a laboratory helicopter and a closed-loop simulation of a robot manipulator are shown. These experiments show the effectiveness and efficiency of ParNMPC both in serial and parallel. | en |
dc.language.iso | eng | - |
dc.publisher | Taylor and Francis | en |
dc.rights | This is an Accepted Manuscript of an article published by Taylor & Francis in [International Journal of Control] on [27 Jul 2020], available at: https://doi.org/10.1080/00207179.2020.1798019. | en |
dc.rights | The full-text file will be made open to the public on 27 Jul 2021 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | en |
dc.subject | Nonlinear model predictive control | en |
dc.subject | parallel computing | en |
dc.subject | real-time optimization | en |
dc.title | ParNMPC – a parallel optimisation toolkit for real-time nonlinear model predictive control | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | International Journal of Control | en |
dc.identifier.volume | 95 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 390 | - |
dc.identifier.epage | 405 | - |
dc.relation.doi | 10.1080/00207179.2020.1798019 | - |
dc.textversion | author | - |
dcterms.accessRights | open access | - |
datacite.date.available | 2021-07-27 | - |
datacite.awardNumber | 15H02257 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15H02257/ | - |
dc.identifier.pissn | 0020-7179 | - |
dc.identifier.eissn | 1366-5820 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 実時間最適化と代数的手法による複雑システム制御の展開と多分野応用 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。