このアイテムのアクセス数: 239

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
00207179.2020.1798019.pdf2.25 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorDeng, Haoyangen
dc.contributor.authorOhtsuka, Toshiyukien
dc.contributor.alternative鄧, 昊洋ja
dc.contributor.alternative大塚, 敏之ja
dc.date.accessioned2023-12-07T07:32:55Z-
dc.date.available2023-12-07T07:32:55Z-
dc.date.issued2022-02-
dc.identifier.urihttp://hdl.handle.net/2433/286316-
dc.description.abstractReal-time optimisation for nonlinear model predictive control (NMPC) has always been challenging, especially for fast-sampling and large-scale applications. This paper presents an efficient implementation of a highly parallelisable method for NMPC, called ParNMPC. The implementation details of ParNMPC are introduced, including a dedicated discretisation method suitable for parallelisation, a framework that unifies search direction calculation done using Newton's method and the parallel method, line search methods for guaranteeing convergence, and a warm start strategy for the interior-point method. To assess the performance of ParNMPC under different configurations, three experiments including a closed-loop simulation of a quadrotor, a real-world control example of a laboratory helicopter and a closed-loop simulation of a robot manipulator are shown. These experiments show the effectiveness and efficiency of ParNMPC both in serial and parallel.en
dc.language.isoeng-
dc.publisherTaylor and Francisen
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in [International Journal of Control] on [27 Jul 2020], available at: https://doi.org/10.1080/00207179.2020.1798019.en
dc.rightsThe full-text file will be made open to the public on 27 Jul 2021 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectNonlinear model predictive controlen
dc.subjectparallel computingen
dc.subjectreal-time optimizationen
dc.titleParNMPC – a parallel optimisation toolkit for real-time nonlinear model predictive controlen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleInternational Journal of Controlen
dc.identifier.volume95-
dc.identifier.issue2-
dc.identifier.spage390-
dc.identifier.epage405-
dc.relation.doi10.1080/00207179.2020.1798019-
dc.textversionauthor-
dcterms.accessRightsopen access-
datacite.date.available2021-07-27-
datacite.awardNumber15H02257-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15H02257/-
dc.identifier.pissn0020-7179-
dc.identifier.eissn1366-5820-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle実時間最適化と代数的手法による複雑システム制御の展開と多分野応用ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。