このアイテムのアクセス数: 122
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s42003-023-05594-4.pdf | 2.8 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Ishikawa, Masato | en |
dc.contributor.author | Sugino, Seiichi | en |
dc.contributor.author | Masuda, Yoshie | en |
dc.contributor.author | Tarumoto, Yusuke | en |
dc.contributor.author | Seto, Yusuke | en |
dc.contributor.author | Taniyama, Nobuko | en |
dc.contributor.author | Wagai, Fumi | en |
dc.contributor.author | Yamauchi, Yuhei | en |
dc.contributor.author | Kojima, Yasuhiro | en |
dc.contributor.author | Kiryu, Hisanori | en |
dc.contributor.author | Yusa, Kosuke | en |
dc.contributor.author | Eiraku, Mototsugu | en |
dc.contributor.author | Mochizuki, Atsushi | en |
dc.contributor.alternative | 石川, 雅人 | ja |
dc.contributor.alternative | 杉野, 成一 | ja |
dc.contributor.alternative | 増田, 芳恵 | ja |
dc.contributor.alternative | 樽本, 雄介 | ja |
dc.contributor.alternative | 瀬戸, 裕介 | ja |
dc.contributor.alternative | 谷山, 暢子 | ja |
dc.contributor.alternative | 和穎, 文 | ja |
dc.contributor.alternative | 山内, 悠平 | ja |
dc.contributor.alternative | 小嶋, 泰弘 | ja |
dc.contributor.alternative | 木立, 尚孝 | ja |
dc.contributor.alternative | 遊佐, 宏介 | ja |
dc.contributor.alternative | 永樂, 元次 | ja |
dc.contributor.alternative | 望月, 敦史 | ja |
dc.date.accessioned | 2024-01-04T08:06:55Z | - |
dc.date.available | 2024-01-04T08:06:55Z | - |
dc.date.issued | 2023-12-28 | - |
dc.identifier.uri | http://hdl.handle.net/2433/286528 | - |
dc.description | 摂動に基づく遺伝子制御ネットワーク推定 --数理モデルによる自動決定--. 京都大学プレスリリース. 2024-01-04. | ja |
dc.description | Gene expression technology set to semi-automation: KyotoU develops RENGE to infer gene regulatory networks efficiently and accurately. 京都大学プレスリリース. 2024-03-14. | ja |
dc.description.abstract | Single-cell RNA-seq analysis coupled with CRISPR-based perturbation has enabled the inference of gene regulatory networks with causal relationships. However, a snapshot of single-cell CRISPR data may not lead to an accurate inference, since a gene knockout can influence multi-layered downstream over time. Here, we developed RENGE, a computational method that infers gene regulatory networks using a time-series single-cell CRISPR dataset. RENGE models the propagation process of the effects elicited by a gene knockout on its regulatory network. It can distinguish between direct and indirect regulations, which allows for the inference of regulations by genes that are not knocked out. RENGE therefore outperforms current methods in the accuracy of inferring gene regulatory networks. When used on a dataset we derived from human-induced pluripotent stem cells, RENGE yielded a network consistent with multiple databases and literature. Accurate inference of gene regulatory networks by RENGE would enable the identification of key factors for various biological systems. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © The Author(s) 2023 | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Dynamical systems | en |
dc.subject | Gene regulation | en |
dc.subject | Gene regulatory networks | en |
dc.subject | Regulatory networks | en |
dc.title | RENGE infers gene regulatory networks using time-series single-cell RNA-seq data with CRISPR perturbations | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Communications Biology | en |
dc.identifier.volume | 6 | - |
dc.relation.doi | 10.1038/s42003-023-05594-4 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 1290 | - |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.address | Laboratory of Computational Life Science, National Cancer Center Research Institute | en |
dc.address | Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University | en |
dc.address | Institute for Life and Medical Sciences, Kyoto University | en |
dc.identifier.pmid | 38155269 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2024-01-04 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/en/research-news/2024-03-14 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 17K20146 | - |
datacite.awardNumber | 21H04959 | - |
datacite.awardNumber | 20K15714 | - |
datacite.awardNumber | 22K06237 | - |
datacite.awardNumber | 17K00398 | - |
datacite.awardNumber | 20K12059 | - |
datacite.awardNumber | 19H05670 | - |
datacite.awardNumber | 19H03196 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17K20146/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H04959/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K15714/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K06237/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17K00398/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K12059/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-ORGANIZER-19H05670/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H03196/ | - |
dc.identifier.eissn | 2399-3642 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | CRISPRスクリーニングを用いたヒトiPS細胞の内胚葉系分化機構の解明 | ja |
jpcoar.awardTitle | in vivo CRISPRスクリーニングの技術確立と生体内細胞増殖機構の解析 | ja |
jpcoar.awardTitle | 転写抑制補因子による多能性幹細胞の未分化制御機構 | ja |
jpcoar.awardTitle | ヒト多能性幹細胞の未分化性制御機構の解析 | ja |
jpcoar.awardTitle | 制御工学に基づく、生命システム推定法と生命制御論の確立 | ja |
jpcoar.awardTitle | 高度な生命モデリングの基盤技術となる確率偏微分方程式のパラメータ推定論の確立 | ja |
jpcoar.awardTitle | 細胞システムの自律周期とその変調が駆動する植物の発生 | ja |
jpcoar.awardTitle | ネットワーク構造に基づく生命システムの恒常性創出原理の数理的解明 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス