このアイテムのアクセス数: 122

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s42003-023-05594-4.pdf2.8 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIshikawa, Masatoen
dc.contributor.authorSugino, Seiichien
dc.contributor.authorMasuda, Yoshieen
dc.contributor.authorTarumoto, Yusukeen
dc.contributor.authorSeto, Yusukeen
dc.contributor.authorTaniyama, Nobukoen
dc.contributor.authorWagai, Fumien
dc.contributor.authorYamauchi, Yuheien
dc.contributor.authorKojima, Yasuhiroen
dc.contributor.authorKiryu, Hisanorien
dc.contributor.authorYusa, Kosukeen
dc.contributor.authorEiraku, Mototsuguen
dc.contributor.authorMochizuki, Atsushien
dc.contributor.alternative石川, 雅人ja
dc.contributor.alternative杉野, 成一ja
dc.contributor.alternative増田, 芳恵ja
dc.contributor.alternative樽本, 雄介ja
dc.contributor.alternative瀬戸, 裕介ja
dc.contributor.alternative谷山, 暢子ja
dc.contributor.alternative和穎, 文ja
dc.contributor.alternative山内, 悠平ja
dc.contributor.alternative小嶋, 泰弘ja
dc.contributor.alternative木立, 尚孝ja
dc.contributor.alternative遊佐, 宏介ja
dc.contributor.alternative永樂, 元次ja
dc.contributor.alternative望月, 敦史ja
dc.date.accessioned2024-01-04T08:06:55Z-
dc.date.available2024-01-04T08:06:55Z-
dc.date.issued2023-12-28-
dc.identifier.urihttp://hdl.handle.net/2433/286528-
dc.description摂動に基づく遺伝子制御ネットワーク推定 --数理モデルによる自動決定--. 京都大学プレスリリース. 2024-01-04.ja
dc.descriptionGene expression technology set to semi-automation: KyotoU develops RENGE to infer gene regulatory networks efficiently and accurately. 京都大学プレスリリース. 2024-03-14.ja
dc.description.abstractSingle-cell RNA-seq analysis coupled with CRISPR-based perturbation has enabled the inference of gene regulatory networks with causal relationships. However, a snapshot of single-cell CRISPR data may not lead to an accurate inference, since a gene knockout can influence multi-layered downstream over time. Here, we developed RENGE, a computational method that infers gene regulatory networks using a time-series single-cell CRISPR dataset. RENGE models the propagation process of the effects elicited by a gene knockout on its regulatory network. It can distinguish between direct and indirect regulations, which allows for the inference of regulations by genes that are not knocked out. RENGE therefore outperforms current methods in the accuracy of inferring gene regulatory networks. When used on a dataset we derived from human-induced pluripotent stem cells, RENGE yielded a network consistent with multiple databases and literature. Accurate inference of gene regulatory networks by RENGE would enable the identification of key factors for various biological systems.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2023en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectDynamical systemsen
dc.subjectGene regulationen
dc.subjectGene regulatory networksen
dc.subjectRegulatory networksen
dc.titleRENGE infers gene regulatory networks using time-series single-cell RNA-seq data with CRISPR perturbationsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleCommunications Biologyen
dc.identifier.volume6-
dc.relation.doi10.1038/s42003-023-05594-4-
dc.textversionpublisher-
dc.identifier.artnum1290-
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.addressLaboratory of Computational Life Science, National Cancer Center Research Instituteen
dc.addressDepartment of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyoen
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.addressInstitute for Life and Medical Sciences, Kyoto University; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto Universityen
dc.addressInstitute for Life and Medical Sciences, Kyoto Universityen
dc.identifier.pmid38155269-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2024-01-04-
dc.relation.urlhttps://www.kyoto-u.ac.jp/en/research-news/2024-03-14-
dcterms.accessRightsopen access-
datacite.awardNumber17K20146-
datacite.awardNumber21H04959-
datacite.awardNumber20K15714-
datacite.awardNumber22K06237-
datacite.awardNumber17K00398-
datacite.awardNumber20K12059-
datacite.awardNumber19H05670-
datacite.awardNumber19H03196-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17K20146/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H04959/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K15714/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K06237/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17K00398/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K12059/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-ORGANIZER-19H05670/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H03196/-
dc.identifier.eissn2399-3642-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleCRISPRスクリーニングを用いたヒトiPS細胞の内胚葉系分化機構の解明ja
jpcoar.awardTitlein vivo CRISPRスクリーニングの技術確立と生体内細胞増殖機構の解析ja
jpcoar.awardTitle転写抑制補因子による多能性幹細胞の未分化制御機構ja
jpcoar.awardTitleヒト多能性幹細胞の未分化性制御機構の解析ja
jpcoar.awardTitle制御工学に基づく、生命システム推定法と生命制御論の確立ja
jpcoar.awardTitle高度な生命モデリングの基盤技術となる確率偏微分方程式のパラメータ推定論の確立ja
jpcoar.awardTitle細胞システムの自律周期とその変調が駆動する植物の発生ja
jpcoar.awardTitleネットワーク構造に基づく生命システムの恒常性創出原理の数理的解明ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons