このアイテムのアクセス数: 153

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
PhysRevC.109.014312.pdf3.58 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHizawa, N.en
dc.contributor.authorHagino, K.en
dc.contributor.alternative樋沢, 規宏ja
dc.contributor.alternative萩野, 浩一ja
dc.date.accessioned2024-01-22T00:09:20Z-
dc.date.available2024-01-22T00:09:20Z-
dc.date.issued2024-01-
dc.identifier.urihttp://hdl.handle.net/2433/286724-
dc.description.abstractA microscopic description of nuclear fission represents one of the most challenging problems in nuclear theory. While phenomenological coordinates, such as multipole moments, have often been employed to describe fission, it is not obvious whether these parameters fully reflect the shape dynamics of interest. We here propose a novel method to extract collective coordinates, which are free from phenomenology, based on multitask deep learning in conjunction with density functional theory (DFT). To this end, we first introduce randomly generated external fields to a Skyrme energy density functional (EDF) and construct a set of nuclear number densities and binding energies for deformed states of ²³⁶U around the ground state. By training a neural network on such a dataset with a combination of an autoencoder and supervised learning, we successfully identify a two-dimensional latent variables that accurately reproduce both the energies and the densities of the original Skyrme-EDF calculations, within a mean absolute error of 113 keV for the energies. In contrast, when multipole moments are used as latent variables for training in constructing the decoders, we find that the training data for the binding energies are reproduced only within 2 MeV. This implies that conventional multipole moments do not provide fully adequate variables for a shape dynamics of heavy nuclei.en
dc.language.isoeng-
dc.publisherAmerican Physical Society (APS)en
dc.rights©2024 American Physical Societyen
dc.subjectFissionen
dc.subjectNuclear shapes and momentsen
dc.subjectCollective dynamicsen
dc.subjectConvolutional neural networksen
dc.subjectDeep learningen
dc.subjectMachine learningen
dc.subjectNuclear Physicsen
dc.titleNonempirical shape dynamics of heavy nuclei with multitask deep learningen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePhysical Review Cen
dc.identifier.volume109-
dc.identifier.issue1-
dc.relation.doi10.1103/PhysRevC.109.014312-
dc.textversionpublisher-
dc.identifier.artnum014312-
dcterms.accessRightsopen access-
datacite.awardNumber22KJ1697-
datacite.awardNumber19K03861-
datacite.awardNumber23K03414-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22KJ1697/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K03861/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-23K03414/-
dc.identifier.pissn2469-9985-
dc.identifier.eissn2469-9993-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle拡張された生成座標法による集団運動の研究ja
jpcoar.awardTitle低エネルギー微視的核反応理論で探る核融合反応及び核分裂のダイナミックスja
jpcoar.awardTitle量子多体系のハミルトニアンに基づく核分裂の微視的アプローチの開発ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。