このアイテムのアクセス数: 124
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
SHTI230972.pdf | 1.2 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Yokoyama, Koji | en |
dc.contributor.author | Yamamoto, Goshiro | en |
dc.contributor.author | Liu, Chang | en |
dc.contributor.author | Kishimoto, Kazumasa | en |
dc.contributor.author | Mori, Yukiko | en |
dc.contributor.author | Kuroda, Tomohiro | en |
dc.contributor.alternative | 横山, 晃士 | ja |
dc.contributor.alternative | 山本, 豪志朗 | ja |
dc.contributor.alternative | 岸本, 和昌 | ja |
dc.contributor.alternative | 森, 由希子 | ja |
dc.contributor.alternative | 黒田, 知宏 | ja |
dc.date.accessioned | 2024-02-07T02:54:30Z | - |
dc.date.available | 2024-02-07T02:54:30Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9781643684574 | - |
dc.identifier.uri | http://hdl.handle.net/2433/286883 | - |
dc.description | Proceedings of the 19th World Congress on Medical and Health Informatics Volume 310 | en |
dc.description | Series: Studies in Health Technology and Informatics | en |
dc.description.abstract | Surveillance videos of operating rooms have potential to benefit post-operative analysis and study. However, there is currently no effective method to extract useful information from the long and massive videos. As a step towards tackling this issue, we propose a novel method to recognize and evaluate individual activities using an anomaly estimation model based on time-sequential prediction. We verified the effectiveness of our method by comparing two time-sequential features: individual bounding boxes and body key points. Experiment results using actual surgery videos show that the bounding boxes are suitable for predicting and detecting regional movements, while the anomaly scores using key points can hardly be used to detect activities. As future work, we will be proceeding with extending our activity prediction for detecting unexpected and urgent events. | en |
dc.language.iso | eng | - |
dc.publisher | IOS Press | en |
dc.rights | © 2024 International Medical Informatics Association (IMIA) and IOS Press. | en |
dc.rights | This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0). | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | - |
dc.title | Individual Activity Anomaly Estimation in Operating Rooms Based on Time-Sequential Prediction | en |
dc.type | book part | - |
dc.type.niitype | Book | - |
dc.identifier.jtitle | MEDINFO 2023 — The Future Is Accessible | en |
dc.identifier.spage | 284 | - |
dc.identifier.epage | 288 | - |
dc.relation.doi | 10.3233/SHTI230972 | - |
dc.textversion | publisher | - |
dc.identifier.pmid | 38269810 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 22H03632 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22H03632/ | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 臨床能力を育む医療教育システムの実現に向けた患者仮想化技術の創出 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス