このアイテムのアクセス数: 124

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
SHTI230972.pdf1.2 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYokoyama, Kojien
dc.contributor.authorYamamoto, Goshiroen
dc.contributor.authorLiu, Changen
dc.contributor.authorKishimoto, Kazumasaen
dc.contributor.authorMori, Yukikoen
dc.contributor.authorKuroda, Tomohiroen
dc.contributor.alternative横山, 晃士ja
dc.contributor.alternative山本, 豪志朗ja
dc.contributor.alternative岸本, 和昌ja
dc.contributor.alternative森, 由希子ja
dc.contributor.alternative黒田, 知宏ja
dc.date.accessioned2024-02-07T02:54:30Z-
dc.date.available2024-02-07T02:54:30Z-
dc.date.issued2024-
dc.identifier.isbn9781643684574-
dc.identifier.urihttp://hdl.handle.net/2433/286883-
dc.descriptionProceedings of the 19th World Congress on Medical and Health Informatics Volume 310en
dc.descriptionSeries: Studies in Health Technology and Informaticsen
dc.description.abstractSurveillance videos of operating rooms have potential to benefit post-operative analysis and study. However, there is currently no effective method to extract useful information from the long and massive videos. As a step towards tackling this issue, we propose a novel method to recognize and evaluate individual activities using an anomaly estimation model based on time-sequential prediction. We verified the effectiveness of our method by comparing two time-sequential features: individual bounding boxes and body key points. Experiment results using actual surgery videos show that the bounding boxes are suitable for predicting and detecting regional movements, while the anomaly scores using key points can hardly be used to detect activities. As future work, we will be proceeding with extending our activity prediction for detecting unexpected and urgent events.en
dc.language.isoeng-
dc.publisherIOS Pressen
dc.rights© 2024 International Medical Informatics Association (IMIA) and IOS Press.en
dc.rightsThis article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).en
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.titleIndividual Activity Anomaly Estimation in Operating Rooms Based on Time-Sequential Predictionen
dc.typebook part-
dc.type.niitypeBook-
dc.identifier.jtitleMEDINFO 2023 — The Future Is Accessibleen
dc.identifier.spage284-
dc.identifier.epage288-
dc.relation.doi10.3233/SHTI230972-
dc.textversionpublisher-
dc.identifier.pmid38269810-
dcterms.accessRightsopen access-
datacite.awardNumber22H03632-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22H03632/-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle臨床能力を育む医療教育システムの実現に向けた患者仮想化技術の創出ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons