このアイテムのアクセス数: 86

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
978-3-031-20212-4_18.pdf542.21 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHung, Mai Congen
dc.contributor.authorTrang, Mai Xuanen
dc.contributor.authorYamada, Akihiroen
dc.contributor.authorTosa, Naokoen
dc.contributor.authorNakatsu, Ryoheien
dc.contributor.alternative土佐, 尚子ja
dc.contributor.alternative中津, 良平ja
dc.date.accessioned2024-05-15T06:59:54Z-
dc.date.available2024-05-15T06:59:54Z-
dc.date.issued2022-
dc.identifier.isbn9783031202124-
dc.identifier.urihttp://hdl.handle.net/2433/287622-
dc.descriptionLecture Notes in Computer Science book series (LNCS, volume 13477)en
dc.description21st IFIP TC 14 International Conference, ICEC 2022, Bremen, Germany, November 1–3, 2022, Proceedingsen
dc.description.abstractArt is an essential part of the entertainment. As 3D entertainment such as 3D games is a trend, it is an exciting topic how to create 3D artworks from 2D artworks. In this work, we investigate the 3D reconstruction problem of the artwork called “Sound of Ikebana, ” which is created by shooting fluid phenomena using a high-speed camera and can create organic, sophisticated, and complex forms. Firstly, we used the Phase Only Correlation method to capture the artwork’s point cloud based on the images captured by multiple high-speed cameras. Then we create a 3D model by a deep learning-based approach from the 2D Sound of Ikebana images. Our result shows that we can apply deep learning techniques to improve the reconstruction of 3D modeling from 2D images with highly complicated forms.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in 'Entertainment Computing - ICEC 2022'. The final authenticated version is available online at: https://doi.org/10.1007/978-3-031-20212-4_18en
dc.rightsThe full-text file will be made open to the public on 24 October 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectfluid arten
dc.subjectSound of Ikebanaen
dc.subject3D reconstructionen
dc.subjectdifferentiable rendering networken
dc.subjectCycleGANen
dc.titleImprovement of Deep Learning Technology to Create 3D Model of Fluid Arten
dc.typeconference paper-
dc.type.niitypeConference Paper-
dc.identifier.jtitleEntertainment Computing – ICEC 2022en
dc.identifier.spage227-
dc.identifier.epage237-
dc.relation.doi10.1007/978-3-031-20212-4_18-
dc.textversionauthor-
dcterms.accessRightsopen access-
datacite.date.available2023-10-24-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。