ダウンロード数: 0

このアイテムのファイル:
このアイテムは一定期間後に公開されます。
公開日については,アイテム画面の「著作権等」でご確認ください。
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSun, Y.en
dc.contributor.authorKumagai, M.en
dc.contributor.authorJin, M.en
dc.contributor.authorSato, E.en
dc.contributor.authorAoki, M.en
dc.contributor.authorOhishi, Y.en
dc.contributor.authorKurosaki, K.en
dc.contributor.alternative孫, 一帆ja
dc.contributor.alternative熊谷, 将也ja
dc.contributor.alternative佐藤, 恵梨子ja
dc.contributor.alternative黒﨑, 健ja
dc.date.accessioned2024-05-21T00:21:18Z-
dc.date.available2024-05-21T00:21:18Z-
dc.date.issued2024-
dc.identifier.urihttp://hdl.handle.net/2433/287630-
dc.description.abstractAdvanced nuclear fuels are designed to offer improved performance and accident tolerance, with an emphasis on achieving higher thermal conductivity. While promising fuel candidates like uranium nitrides, carbides, and silicides have been widely studied, the majority of uranium compounds remain unexplored. To search for potential candidates among these unexplored uranium compounds, we incorporated machine learning to accelerate the material discovery process. In this study, we trained a multiclass classification model to predict a compound’s thermal conductivity based on 133 input features derived from element properties and temperature. The initial training data consist of over 160, 000 processed thermal conductivity records from the Starrydata2 database, but a skewed data class distribution led the trained model to underestimate compound’s thermal conductivity. Consequently, we addressed the issue of class imbalance by applying Synthetic Minority Oversampling TEchnique and Random UnderSampling, improving the recall for materials with thermal conductivity higher than 15 W/mK from 0.64 to 0.71. Finally, our best model is used to identify 119 potential advanced fuel candidates with high thermal conductivity among 774 stable uranium compounds. Our results underscore the potential of machine learning in the field of nuclear science, accelerating the discovery of advanced nuclear materials.en
dc.language.isoeng-
dc.publisherTaylor & Francisen
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Nuclear Science and Technology on 08 Nov 2023, available at: https://www.tandfonline.com/doi/10.1080/00223131.2023.2269974en
dc.rightsThe full-text file will be made open to the public on 08 Nov 2024 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectAdvanced nuclear fuelsen
dc.subjectmachine learningen
dc.subjectthermal conductivityen
dc.titleA multiclass classification model for predicting the thermal conductivity of uranium compoundsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Nuclear Science and Technologyen
dc.identifier.volume61-
dc.identifier.issue6-
dc.identifier.spage778-
dc.identifier.epage788-
dc.relation.doi10.1080/00223131.2023.2269974-
dc.textversionauthor-
dcterms.accessRightsembargoed access-
datacite.date.available2024-11-08-
dc.identifier.pissn0022-3131-
dc.identifier.eissn1881-1248-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。