このアイテムのアクセス数: 35

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2256-03.pdf13.44 MBAdobe PDF見る/開く
タイトル: MATRIX WEIGHTS, SINGULAR INTEGRALS, JONES FACTORIZATION AND RUBIO DE FRANCIA EXTRAPOLATION (Research on Real, Complex and Functional Analysis from the Perspective of Reproducing Kernel Hilbert Spaces)
著者: Cruz-Uribe, David
キーワード: 42B20
42B25
42B35
発行日: Jun-2023
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2256
開始ページ: 16
終了ページ: 30
抄録: In this article we give an overview of the problem of finding sharp constants in matrix weighted norm ineqnalities for singular integrals, the so-called matrix A2 conjecture. We begin by reviewing the history of the problem in the scalar case, including ask etch of the proof of the scalar A2 conjecture. We then discuss the original, qnalitative resnlts for singular integrals with matrix weights and the best known quantitative estimates. We give an overview of new results by the author and Bownik, wh o developed ath eory of hannonic analysis on convex set-valned functions. This led to the proof the Jones factorization theorem and the Rnbio de Francia extrapolation theorem for matrix weights, two longstanding problems. Rubio de Francia extrapolation is expected to be ama jor tool in the proof of the matrix A2 conjecture, and we discuss some ideas which may lead to aco mplete solution.
URI: http://hdl.handle.net/2433/289155
出現コレクション:2256 再生核ヒルベルト空間を中心とした実解析・複素解析・函数解析の総合的研究

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。