このアイテムのアクセス数: 677
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2264-15.pdf | 4.91 MB | Adobe PDF | 見る/開く |
タイトル: | On equivariant holomorphic differential operators starting from vector-valued cases (Analytic and arithmetic aspects of automorphic representations) |
著者: | Böcherer, Siegfried Meister, Julia |
発行日: | Aug-2023 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2264 |
開始ページ: | 184 |
終了ページ: | 193 |
抄録: | The theory of Rankin-Cohen bilinear holomorphic differential operators is well explored for scalar-valued cases, mainly by the work of Ibukiyama. Not so much is known when we start from vector-valued automorphy factors. We will describe some constructions starting from nonholomorphic operators of Maaβ-Shimura type. We focus on operators of order one, but by some compatibility with tensor products we can cover more general situations. For the case of symmetric tensor representations we can however give quite complete results by a direct approach. Some parts of the presentation are based on the Mannheim PhD-thesis 2021 by Julia Meister. |
URI: | http://hdl.handle.net/2433/289703 |
出現コレクション: | 2264 保型表現の解析的・数論的研究 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。