このアイテムのアクセス数: 49
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2263-06.pdf | 14.35 MB | Adobe PDF | 見る/開く |
タイトル: | Quantum invariants based on ideal triangulations (Intelligence of Low-dimensional Topology) |
著者: | Suzuki, Sakie |
著者名の別形: | 鈴木, 咲衣 |
発行日: | Aug-2023 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2263 |
開始ページ: | 48 |
終了ページ: | 67 |
抄録: | We have presented three types of reconstructions of the universal invariant. The original construction associates the universal R-matrix or its inverse with each crossing of link diagrams, while the reconstructions associate the S-tensor or its inverse with each ideal tetrahedron of 3-manifolds. The first reconstruction (Theorem 3.1) uses slice diagrams of tangles and provides a topological realization of Kashaev’s embedding at each crossing of tangles. However, it cannot be extended to be an invariant of 3-manifolds. By introducing integral normal o-graphs, we can represent framed 3-manifolds. In particular, for closed framed 3-manifolds with a vanishing first Betti number, we establish a one-to-one correspondence (Theorem 4.1). This allows us to construct an invariant of closed framed 3-manifolds (Theorem 5.3). Taking the framing structure into account, in the context of the universal invariant, we provide two alternative reconstructions (Theorems 6.2 and 6.3) using integral normal o-graphs. This means that the invariant Z extends the universal invariant in a three dimensional manner. We anticipate that our framework will provide a new approach to studying quantum invariants in a three-dimensional context. |
URI: | http://hdl.handle.net/2433/289729 |
出現コレクション: | 2263 Intelligence of Low-dimensional Topology |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。