このアイテムのアクセス数: 72

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ece3.10698.pdf2.07 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTakaya, Kosukeen
dc.contributor.authorTaguchi, Yukien
dc.contributor.authorIse, Takeshien
dc.contributor.alternative高屋, 浩介ja
dc.contributor.alternative伊勢, 武史ja
dc.date.accessioned2024-11-12T07:09:32Z-
dc.date.available2024-11-12T07:09:32Z-
dc.date.issued2023-11-
dc.identifier.urihttp://hdl.handle.net/2433/290291-
dc.description.abstractHuman-mediated hybridization between native and non-native species is causing biodiversity loss worldwide. Hybridization has contributed to the extinction of many species through direct and indirect processes such as loss of reproductive opportunity and genetic introgression. Therefore, it is essential to manage hybrids to conserve biodiversity. However, specialized knowledge is required to identify the target species based on visual characteristics when two species have similar features. Although image recognition technology can be a powerful tool for identifying hybrids, studies have yet to utilize deep learning approaches. Hence, this study aimed to identify hybrids between the native Japanese giant salamander (Andrias japonicus) and the non-native Chinese giant salamander (Andrias cf. davidianus) using EfficientNetV2 and smartphone images. We used smartphone images of 11 individuals of native A. japonicus (five training and six test images) and 20 individuals of hybrids between A. japonicus and A. cf. davidianus (five training and 15 test images). In our experimental environment, an AI model constructed with EfficientNetV2 exhibited 100% accuracy in identifying hybrids. In addition, gradient-weighted class activation mapping revealed that the AI model was able to classify A. japonicus and hybrids between A. japonicus and A. cf. davidianus on the basis of the dorsal head spot patterning. Our approach thus enables the identification of hybrids against A. japonicus, which was previously considered difficult by non-experts. Furthermore, since this study achieved reliable identification using smartphone images, it is expected to be applied to a wide range of citizen science projects.en
dc.language.isoeng-
dc.publisherWileyen
dc.rights© 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.en
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectamphibianen
dc.subjectbiological invasionsen
dc.subjectEfficientNetV2en
dc.subjectgradient-weighted class activation mappingen
dc.subjecthybridizationen
dc.titleIdentification of hybrids between the Japanese giant salamander (Andrias japonicus) and Chinese giant salamander (Andrias cf. davidianus) using deep learning and smartphone imagesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleEcology and Evolutionen
dc.identifier.volume13-
dc.identifier.issue11-
dc.relation.doi10.1002/ece3.10698-
dc.textversionpublisher-
dc.identifier.artnume10698-
dc.identifier.pmid37953985-
dcterms.accessRightsopen access-
dc.identifier.pissn2045-7758-
dc.identifier.eissn2045-7758-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons