このアイテムのアクセス数: 33

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
JHEP10(2024)111.pdf816.27 kBAdobe PDF見る/開く
タイトル: AdS/CFT correspondence for the O(N) invariant critical φ⁴ model in 3-dimensions by the conformal smearing
著者: Aoki, Sinya
Kawana, Kiyoharu
Shimada, Kengo
著者名の別形: 青木, 愼也
嶼田, 健悟
キーワード: AdS-CFT Correspondence
Scale and Conformal Symmetries
Field Theories in Lower Dimensions
発行日: 15-Oct-2024
出版者: Springer Nature
誌名: Journal of High Energy Physics
巻: 2024
号: 10
論文番号: 111
抄録: We investigate a structure of a 4-dimensional bulk space constructed from the O(N) invariant critical φ⁴ model in 3-dimension using the conformal smearing. We calculate a bulk metric corresponding to the information metric and the bulk-to-boundary propagator for a composite scalar field φ² in the large N expansion. We show that the bulk metric describes an asymptotic AdS space at both UV (near boundary) and IR (deep in the bulk) limits, which correspond to the asymptotic free UV fixed point and the Wilson-Fisher IR fixed point of the 3-dimensional φ⁴ model, respectively. The bulk-to-boundary scalar propagator, on the other hand, encodes ∆φ2 (the conformal dimension of φ²) into its z (a coordinate in the extra direction of the AdS space) dependence. Namely it correctly reproduces not only ∆φ2 = 1 at UV fixed point but also ∆φ2 = 2 at the IR fixed point for the boundary theory. Moreover, we confirm consistency with the GKP-Witten relation in the interacting theory that the coefficient of the [z]∆[φ2] term in z → 0 limit agrees exactly with the two-point function of φ² including an effect of the φ⁴ interaction.
著作権等: © The Authors.
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
URI: http://hdl.handle.net/2433/290456
DOI(出版社版): 10.1007/JHEP10(2024)111
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons