このアイテムのアクセス数: 78
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.jclinepi.2024.111538.pdf | 435.38 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Inoue, Kosuke | en |
dc.contributor.author | Adomi, Motohiko | en |
dc.contributor.author | Efthimiou, Orestis | en |
dc.contributor.author | Komura, Toshiaki | en |
dc.contributor.author | Omae, Kenji | en |
dc.contributor.author | Onishi, Akira | en |
dc.contributor.author | Tsutsumi, Yusuke | en |
dc.contributor.author | Fujii, Tomoko | en |
dc.contributor.author | Kondo, Naoki | en |
dc.contributor.author | Furukawa, Toshi A. | en |
dc.contributor.alternative | 井上, 浩輔 | ja |
dc.contributor.alternative | 安富, 元彦 | ja |
dc.contributor.alternative | 古村, 俊昌 | ja |
dc.contributor.alternative | 大前, 憲史 | ja |
dc.contributor.alternative | 大西, 輝 | ja |
dc.contributor.alternative | 堤, 悠介 | ja |
dc.contributor.alternative | 藤井, 智子 | ja |
dc.contributor.alternative | 近藤, 尚己 | ja |
dc.contributor.alternative | 古川, 壽亮 | ja |
dc.date.accessioned | 2024-12-02T06:19:34Z | - |
dc.date.available | 2024-12-02T06:19:34Z | - |
dc.date.issued | 2024-12 | - |
dc.identifier.uri | http://hdl.handle.net/2433/290648 | - |
dc.description | 機械学習を用いた因果効果の異質性のレビュー --医学研究での効果的な応用に向けて --. 京都大学プレスリリース. 2024-10-30. | ja |
dc.description.abstract | Background and Objectives: Estimating heterogeneous treatment effects (HTEs) in randomized controlled trials (RCTs) has received substantial attention recently. This has led to the development of several statistical and machine learning (ML) algorithms to assess HTEs through identifying individualized treatment effects. However, a comprehensive review of these algorithms is lacking. We thus aimed to catalog and outline currently available statistical and ML methods for identifying HTEs via effect modeling using clinical RCT data and summarize how they have been applied in practice. Study Design and Setting: We performed a scoping review using prespecified search terms in MEDLINE and Embase, aiming to identify studies that assessed HTEs using advanced statistical and ML methods in RCT data published from 2010 to 2022. Results: Among a total of 32 studies identified in the review, 17 studies applied existing algorithms to RCT data, and 15 extended existing algorithms or proposed new algorithms. Applied algorithms included penalized regression, causal forest, Bayesian causal forest, and other metalearner frameworks. Of these methods, causal forest was the most frequently used (7 studies) followed by Bayesian causal forest (4 studies). Most applications were in cardiology (6 studies), followed by psychiatry (4 studies). We provide example R codes in simulated data to illustrate how to implement these algorithms. Conclusion: This review identified and outlined various algorithms currently used to identify HTEs and individualized treatment effects in RCT data. Given the increasing availability of new algorithms, analysts should carefully select them after examining model performance and considering how the models will be used in practice. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2024 The Author(s). Published by Elsevier Inc. | en |
dc.rights | This is an open access article under the CC BY-NC license. | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | - |
dc.subject | Heterogeneous treatment effect | en |
dc.subject | Individualized treatment effect | en |
dc.subject | Machine learning | en |
dc.subject | Randomized controlled trial | en |
dc.subject | Personalized medicine | en |
dc.subject | Scoping review | en |
dc.title | Machine learning approaches to evaluate heterogeneous treatment effects in randomized controlled trials: a scoping review | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Journal of Clinical Epidemiology | en |
dc.identifier.volume | 176 | - |
dc.relation.doi | 10.1016/j.jclinepi.2024.111538 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 111538 | - |
dc.address | Department of Social Epidemiology, Graduate School of Medicine, Kyoto University; Hakubi Center, Kyoto University | en |
dc.address | Department of Epidemiology, Harvard T.H. Chan School of Public Health | en |
dc.address | Institute of Primary Health Care (BIHAM), University of Bern; Institute of Social and Preventive Medicine (ISPM), University of Bern | en |
dc.address | Department of Epidemiology, School of Public Health, Boston University | en |
dc.address | Department of Innovative Research and Education for Clinicians and Trainees, Fukushima Medical University Hospital; Center for Innovative Research for Communities and Clinical Excellence, Fukushima Medical University | en |
dc.address | Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine | en |
dc.address | Human Health Sciences, Kyoto University Graduate School of Medicine; Department of Emergency Medicine, National Hospital Organization Mito Medical Center | en |
dc.address | Intensive Care Unit, Jikei University Hospital; Departments of Health Promotion and Human Behavior and of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health | en |
dc.address | Department of Social Epidemiology, Graduate School of Medicine, Kyoto University | en |
dc.address | Departments of Health Promotion and Human Behavior and of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health | en |
dc.identifier.pmid | 39305940 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2024-10-30-1 | - |
dcterms.accessRights | open access | - |
dc.identifier.pissn | 0895-4356 | - |
dc.identifier.eissn | 1878-5921 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス