このアイテムのアクセス数: 14
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2269-02.pdf | 11.57 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | ABHINANDAN | en |
dc.date.accessioned | 2025-01-15T04:16:16Z | - |
dc.date.available | 2025-01-15T04:16:16Z | - |
dc.date.issued | 2023-12 | - |
dc.identifier.uri | http://hdl.handle.net/2433/291160 | - |
dc.description | This article is an expanded version of my talk at RIMS conference Algebraic Number Theory and related topics 2022. | en |
dc.description.abstract | Using finite crystalline height representations and their naturally associated invariants, we study local and global syntomic complexes with coefficients. The text is organized as follows. After briefly recalling the 𝑝-adic crystalline comparison theorem and importance of syntomic methods in its proof we pose a question on syntomic complex with coefficients. To answer our question, we quickly recount the theory of finite crystalline height representations developed in [Abh21] and show that Galois cohomology of such representations (upto a twist), is essentially computed by (Fontaine-Messing) syntomic complex with coefficients in the associated 𝑭-isocrystal. In global applications, for smooth (𝑝-adic formal) schemes, we show a comparison between syntomic complex with coefficient in a locally free Fontaine-Laffaille module and complex of 𝑝-adic nearby cycles of the associated étale local system on the (rigid) generic fiber. Proofs of aforementioned results can be found in [Abh22]. | en |
dc.language.iso | eng | - |
dc.publisher | 京都大学数理解析研究所 | ja |
dc.publisher.alternative | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.subject.ndc | 410 | - |
dc.title | FINITE CRYSTALLINE HEIGHT REPRESENTATIONS AND SYNTOMIC COMPLEXES (Algebraic Number Theory and Related Topics) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AN00061013 | - |
dc.identifier.jtitle | 数理解析研究所講究録 | ja |
dc.identifier.volume | 2269 | - |
dc.identifier.spage | 10 | - |
dc.identifier.epage | 22 | - |
dc.textversion | publisher | - |
dc.sortkey | 02 | - |
dc.address | UNIVERSITY OF TOKYO | en |
dc.address.alternative | 東京大学 | ja |
dc.relation.url | https://www.rs.tus.ac.jp/a25594/rimsant2022.html | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 22F22711 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22KF0094/ | - |
dc.identifier.pissn | 1880-2818 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | p進ホッヂ理論における係数 | ja |
出現コレクション: | 2269 代数的整数論とその周辺 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。