このアイテムのアクセス数: 14

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2269-02.pdf11.57 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorABHINANDANen
dc.date.accessioned2025-01-15T04:16:16Z-
dc.date.available2025-01-15T04:16:16Z-
dc.date.issued2023-12-
dc.identifier.urihttp://hdl.handle.net/2433/291160-
dc.descriptionThis article is an expanded version of my talk at RIMS conference Algebraic Number Theory and related topics 2022.en
dc.description.abstractUsing finite crystalline height representations and their naturally associated invariants, we study local and global syntomic complexes with coefficients. The text is organized as follows. After briefly recalling the 𝑝-adic crystalline comparison theorem and importance of syntomic methods in its proof we pose a question on syntomic complex with coefficients. To answer our question, we quickly recount the theory of finite crystalline height representations developed in [Abh21] and show that Galois cohomology of such representations (upto a twist), is essentially computed by (Fontaine-Messing) syntomic complex with coefficients in the associated 𝑭-isocrystal. In global applications, for smooth (𝑝-adic formal) schemes, we show a comparison between syntomic complex with coefficient in a locally free Fontaine-Laffaille module and complex of 𝑝-adic nearby cycles of the associated étale local system on the (rigid) generic fiber. Proofs of aforementioned results can be found in [Abh22].en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleFINITE CRYSTALLINE HEIGHT REPRESENTATIONS AND SYNTOMIC COMPLEXES (Algebraic Number Theory and Related Topics)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2269-
dc.identifier.spage10-
dc.identifier.epage22-
dc.textversionpublisher-
dc.sortkey02-
dc.addressUNIVERSITY OF TOKYOen
dc.address.alternative東京大学ja
dc.relation.urlhttps://www.rs.tus.ac.jp/a25594/rimsant2022.html-
dcterms.accessRightsopen access-
datacite.awardNumber22F22711-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22KF0094/-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitlep進ホッヂ理論における係数ja
出現コレクション:2269 代数的整数論とその周辺

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。