このアイテムのアクセス数: 18

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
jccjie.2024-0012.pdf1.62 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorShibasaki, Mizukien
dc.contributor.authorSuzuki, Tetsuhitoen
dc.contributor.authorFukushima, Moriyukien
dc.contributor.authorNagaoka, Shin-ichien
dc.contributor.authorOgawa, Yuichien
dc.contributor.authorKondo, Naoshien
dc.contributor.alternative芝崎, 美月ja
dc.contributor.alternative鈴木, 哲仁ja
dc.contributor.alternative福島, 護之ja
dc.contributor.alternative長岡, 伸一ja
dc.contributor.alternative小川, 雄一ja
dc.contributor.alternative近藤, 直ja
dc.date.accessioned2025-01-21T02:11:34Z-
dc.date.available2025-01-21T02:11:34Z-
dc.date.issued2024-
dc.identifier.urihttp://hdl.handle.net/2433/291282-
dc.description.abstractDeep learning in combination with fluorescence excitation-emission spectroscopy was studied to quantitatively analyze vitamin A (retinol) in cattle blood. The neural network model being obtained with the deep learning predicted the vitamin-A levels with a coefficient of determination (R²) of 0.93 with respect to the experimental values. The combination of the deep learning and fluorescence excitation-emission spectroscopy has a potential to predict the vitamin-A level in the cattle blood accurately, rapidly and inexpensively and to improve production of marbled beef with maintaining cattle health. It could also be applied to quantitative vitamin-A assays of various biological tissues, foods and so on as well as to those of blood samples besides cattle.en
dc.language.isoeng-
dc.publisherSociety of Computer Chemistry, Japanen
dc.publisher.alternative日本コンピュータ化学会ja
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (CC BY-NC-ND) 4.0 License.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectDeep learningen
dc.subjectNeural networken
dc.subjectFluorescence excitation-emission spectroscopyen
dc.subjectVitamin Aen
dc.subjectRetinolen
dc.subjectCattle blooden
dc.subjectrandom foresten
dc.titleA Study of Deep Learning for Quantitative Analysis of Vitamin A in Cattle Blooden
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Computer Chemistry, Japan -International Editionen
dc.identifier.volume10-
dc.relation.doi10.2477/jccjie.2024-0012-
dc.textversionpublisher-
dc.identifier.artnum2024-0012-
dcterms.accessRightsopen access-
dc.identifier.eissn2189-048X-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons