このアイテムのアクセス数: 43

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
PhysRevResearch.6.033305.pdf3.32 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSankaewtong, Krongtumen
dc.contributor.authorMolina, John J.en
dc.contributor.authorYamamoto, Ryoichien
dc.contributor.alternative山本, 量一ja
dc.date.accessioned2025-01-29T04:31:31Z-
dc.date.available2025-01-29T04:31:31Z-
dc.date.issued2024-09-16-
dc.identifier.urihttp://hdl.handle.net/2433/291483-
dc.description.abstractThe vision of deploying miniature vehicles within the human body for intricate tasks holds tremendous promise across engineering and medical domains. Herein, optimal navigation of a cargo-towing swimmer under an applied zig-zag flow is studied by employing direct numerical simulations coupled with a deep reinforcement learning algorithm. Tasks include navigation in flow and shear-gradient directions. We initially explore combinations of state inputs, finding that optimal navigation necessitates swimmers to perceive hydrodynamics and alignment, surpassing reliance solely on hydrodynamic signals while considering their memories. Next, we study combinations of action spaces, allowing dynamic changes in swimming and/or rotational velocities by tuning 𝐵₁ and 𝐶₁ parameters of the squirmer model, respectively. By keeping both parameters fixed, cargo-towing swimmers demonstrate superior performance in the flow direction compared to swimmers without load due to tumbling movements influenced by shear flow. In the shear-gradient direction, swimmers without load outperform cargo-towing swimmers, with performance decreasing as load length increases. Across the combination of allowing 𝐵₁ and 𝐶₁ to change, the policies from solely dynamic 𝐵₁ actions demonstrate superior navigation. The policies are then used as a showcase against naive cargo-towing and inert colloidal chains. A t-distributed stochastic neighbor embedding analysis reveals the complex interplay between perceived hydrodynamic signals and swimmer position. In the flow direction, swimmers align effectively with regions of maximum velocity, while in the shear-gradient direction, periodic transitions from minimum to maximum state values occur. Comparing pullers, pushers, and neutral swimmers, cargo-towing swimmers show a reversal in swimming velocity trends, with pullers outpacing neutral and pusher swimmers, irrespective of load lengths.en
dc.language.isoeng-
dc.publisherAmerican Physical Society (APS)en
dc.rightsPublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectBiological fluid dynamicsen
dc.subjectDrug deliveryen
dc.subjectSwimmingen
dc.subjectComplex fluidsen
dc.subjectFluid-particle interactionsen
dc.subjectMicroswimmersen
dc.subjectSmart materialsen
dc.subjectDeep learningen
dc.subjectMachine learningen
dc.titleEfficient navigation of cargo-towing microswimmer in non-uniform flow fieldsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePhysical Review Researchen
dc.identifier.volume6-
dc.identifier.issue3-
dc.relation.doi10.1103/PhysRevResearch.6.033305-
dc.textversionpublisher-
dc.identifier.artnum033305-
dcterms.accessRightsopen access-
dc.identifier.eissn2643-1564-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons