このアイテムのアクセス数: 22

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41598-024-82359-x.pdf2.05 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorMasuda, Soichiroen
dc.contributor.authorFukasawa, Toshikien
dc.contributor.authorInokuchi, Shoichiroen
dc.contributor.authorOtsuki, Bungoen
dc.contributor.authorMurata, Koichien
dc.contributor.authorShimizu, Takayoshien
dc.contributor.authorSono, Takashien
dc.contributor.authorHonda, Shintaroen
dc.contributor.authorShima, Koichiroen
dc.contributor.authorSakamoto, Masakien
dc.contributor.authorMatsuda, Shuichien
dc.contributor.authorKawakami, Kojien
dc.contributor.alternative桝田, 崇一郎ja
dc.contributor.alternative深澤, 俊貴ja
dc.contributor.alternative大槻, 文悟ja
dc.contributor.alternative村田, 浩一ja
dc.contributor.alternative清水, 孝彬ja
dc.contributor.alternative薗, 隆ja
dc.contributor.alternative本田, 新太郎ja
dc.contributor.alternative嶋, 皓一郎ja
dc.contributor.alternative阪本, 将暉ja
dc.contributor.alternative松田, 秀一ja
dc.contributor.alternative川上, 浩司ja
dc.date.accessioned2025-01-31T05:29:35Z-
dc.date.available2025-01-31T05:29:35Z-
dc.date.issued2024-12-28-
dc.identifier.urihttp://hdl.handle.net/2433/291552-
dc.description.abstractAlthough conservative treatment is commonly used for osteoporotic vertebral fracture (OVF), some patients experience functional disability following OVF. This study aimed to develop prediction models for new-onset functional impairment following admission for OVF using machine learning approaches and compare their performance. Our study consisted of patients aged 65 years or older admitted for OVF using a large hospital-based database between April 2014 and December 2021. As the primary outcome, we defined new-onset functional impairment as a Barthel Index ≤ 60 at discharge. In the training dataset, we developed three machine learning models (random forest [RF], gradient-boosting decision tree [GBDT], and deep neural network [DNN]) and one conventional model (logistic regression [LR]). In the test dataset, we compared the predictive performance of these models. A total of 31, 306 patients were identified as the study cohort. In the test dataset, all models showed good discriminatory ability, with an area under the curve (AUC) greater than 0.7. GBDT (AUC = 0.761) outperformed LR (0.756), followed by DNN (0.755), and RF (0.753). We successfully developed prediction models for new-onset functional impairment following admission for OVF. Our findings will contribute to effective treatment planning in this era of increasing prevalence of OVF.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2024en
dc.rightsThis article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectOsteoporotic vertebral fractureen
dc.subjectOVFen
dc.subjectPrediction modelen
dc.subjectFunctional impairmenten
dc.subjectActivities of daily livingen
dc.subjectMachine learningen
dc.titleEarly prediction of functional impairment at hospital discharge in patients with osteoporotic vertebral fracture: a machine learning approachen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleScientific Reportsen
dc.identifier.volume14-
dc.relation.doi10.1038/s41598-024-82359-x-
dc.textversionpublisher-
dc.identifier.artnum31139-
dc.identifier.pmid39732765-
dcterms.accessRightsopen access-
dc.identifier.eissn2045-2322-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons