このアイテムのアクセス数: 69

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.amc.2024.129219.pdf628.12 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYamakawa, Yuyaen
dc.contributor.authorYamashita, Nobuoen
dc.contributor.alternative山川, 雄也ja
dc.contributor.alternative山下, 信雄ja
dc.date.accessioned2025-02-06T04:08:10Z-
dc.date.available2025-02-06T04:08:10Z-
dc.date.issued2025-04-15-
dc.identifier.urihttp://hdl.handle.net/2433/291659-
dc.description.abstractThis paper presents a regularized Newton method (RNM) with generalized regularization terms for unconstrained convex optimization problems. The generalized regularization includes quadratic, cubic, and elastic net regularizations as special cases. Therefore, the proposed method serves as a general framework that includes not only the classical and cubic RNMs but also a novel RNM with elastic net regularization. We show that the proposed RNM has the global 𝓞(𝑘⁻²) and local superlinear convergence, which are the same as those of the cubic RNM.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2024 The Author(s). Published by Elsevier Inc.en
dc.rightsThis is an open access article under the CC BY license.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectUnconstrained convex optimizationen
dc.subjectRegularized Newton methoden
dc.subjectGeneralized regularizationen
dc.subjectGlobal 𝓞(𝑘⁻²) convergenceen
dc.subjectSuperlinear convergenceen
dc.subjectLocal convergenceen
dc.titleConvergence analysis of a regularized Newton method with generalized regularization terms for unconstrained convex optimization problemsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleApplied Mathematics and Computationen
dc.identifier.volume491-
dc.relation.doi10.1016/j.amc.2024.129219-
dc.textversionpublisher-
dc.identifier.artnum129219-
dcterms.accessRightsopen access-
dc.identifier.pissn0096-3003-
dc.identifier.eissn1873-5649-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons