このアイテムのアクセス数: 25

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
5.0248430.pdf2.43 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIkeda, Yasuakien
dc.contributor.authorAkura, Yukien
dc.contributor.authorShimofuri, Masakien
dc.contributor.authorBanerjee, Amiten
dc.contributor.authorTsuchiya, Toshiyukien
dc.contributor.authorHirotani, Junen
dc.date.accessioned2025-02-25T04:57:58Z-
dc.date.available2025-02-25T04:57:58Z-
dc.date.issued2025-02-07-
dc.identifier.urihttp://hdl.handle.net/2433/292189-
dc.description.abstractNon-contact and non-destructive methods are essential for accurately determining the thermophysical properties necessary for the optimal thermal design of semiconductor devices and for assessing the properties of materials with varying crystallinity across their thickness. Among these methods, frequency-domain thermoreflectance (FDTR) stands out as an effective technique for evaluating the thermal characteristics of nano/microscale specimens. FDTR varies the thermal penetration depth by modifying the heating frequency, enabling a detailed analysis of the thermophysical properties at different depths. This study introduces a machine learning approach that employs FDTR to examine the thermal conductivity profile along the depth of a specimen. A neural network model incorporating dropout techniques was adapted to estimate the posterior probability distribution of depth-wise thermal conductivity. Analytical databases for both uniform and non-uniform thermal conductivity profiles were generated, and the machine learning model was trained using these databases. The effectiveness of the predictive model was confirmed through assessments of both uniform and non-uniform thermal conductivity profiles, achieving a coefficient of determination between 0.96 and 0.99. For uniform thermal conductivity, the method attained mean absolute percentage errors of 1.362% for thermal conductivity and 3.466% for thermal boundary conductance (compared to actual values in the analytically calculated database). In cases of non-uniform thermal conductivity, the prediction accuracy decreased, particularly near the sample's surface, primarily due to the limited availability of machine learning data at higher heating frequencies.en
dc.language.isoeng-
dc.publisherAIP Publishingen
dc.rights© 2025 Author(s).en
dc.rightsAll article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectThermal conductivityen
dc.subjectSemiconductor devicesen
dc.subjectHeat transferen
dc.subjectArtificial neural networksen
dc.subjectMachine learningen
dc.subjectFrequency domain thermoreflectanceen
dc.subjectMaterial characterization methodsen
dc.subjectRegression analysisen
dc.titleEstimating depth-directional thermal conductivity profiles using neural network with dropout in frequency-domain thermoreflectanceen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Applied Physicsen
dc.identifier.volume137-
dc.identifier.issue5-
dc.relation.doi10.1063/5.0248430-
dc.textversionpublisher-
dc.identifier.artnum055106-
dcterms.accessRightsopen access-
dc.identifier.pissn0021-8979-
dc.identifier.eissn1089-7550-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons