このアイテムのアクセス数: 27
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s41598-025-85372-w.pdf | 1.92 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Li, Nanding | en |
dc.contributor.author | Kondo, Naoshi | en |
dc.contributor.author | Ogawa, Yuichi | en |
dc.contributor.author | Shiraga, Keiichiro | en |
dc.contributor.author | Shibasaki, Mizuki | en |
dc.contributor.author | Pinna, Daniele | en |
dc.contributor.author | Fukushima, Moriyuki | en |
dc.contributor.author | Nagaoka, Shinichi | en |
dc.contributor.author | Fujiura, Tateshi | en |
dc.contributor.author | De, Xuehong | en |
dc.contributor.author | Suzuki, Tetsuhito | en |
dc.contributor.alternative | 近藤 直 | ja |
dc.contributor.alternative | 小川 雄一 | ja |
dc.contributor.alternative | 白神 慧一郎 | ja |
dc.contributor.alternative | 芝崎 美月 | ja |
dc.contributor.alternative | 福島 護之 | ja |
dc.contributor.alternative | 長岡 伸一 | ja |
dc.contributor.alternative | 藤浦 建史 | ja |
dc.date.accessioned | 2025-03-04T00:54:39Z | - |
dc.date.available | 2025-03-04T00:54:39Z | - |
dc.date.issued | 2025-02-03 | - |
dc.identifier.uri | http://hdl.handle.net/2433/292287 | - |
dc.description.abstract | In the wagyu industry worldwide, high-quality marbling beef is produced by promoting intramuscular fat deposition during cattle fattening stage through dietary vitamin A control. Thus, however, cattle become susceptible to either vitamin A deficiency or excess state, not only influencing cattle performance and beef quality, but also causing health problems. Researchers have been exploring eye photography monitoring methods for cattle blood vitamin A levels based on the relation between vitamin A and retina colour changes. But previous endeavours cannot realise real-time monitoring and their prediction accuracy still need improvement in a practical sense. This study developed a handheld camera system capable of capturing cattle fundus images and predicting vitamin A levels in real time using deep learning. 4000 fundus images from 50 Japanese Black cattle were used to train and test the prediction algorithms, and the model achieved an average 87%, 83%, and 80% accuracy for three levels of vitamin A deficiency classification (particularly 87% for severe level), demonstrating the effectiveness of camera system in vitamin A deficiency prediction, especially for screening and early warning. More importantly, a new method was exemplified to utilise visualisation heatmap for colour-related DNNs tasks, and it was found that chromatic features extracted from LRP heatmap highlighted-ROI could account for 70% accuracy for the prediction of vitamin A deficiency. This system can assist farmers in blood vitamin A level monitoring and related disease prevention, contributing to precision livestock management and animal well-being in wagyu industry. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © The Author(s) 2025 | en |
dc.rights | This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Fundus imaging | en |
dc.subject | Deep learning | en |
dc.subject | Vitamin A estimation | en |
dc.subject | Japanese black cattle | en |
dc.subject | Precision Livestock Farming | en |
dc.title | Fundus camera-based precision monitoring of blood vitamin A level for Wagyu cattle using deep learning | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Scientific Reports | en |
dc.identifier.volume | 15 | - |
dc.relation.doi | 10.1038/s41598-025-85372-w | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 4125 | - |
dc.identifier.pmid | 39900776 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 17H01500 | - |
datacite.awardNumber | 20H00439 | - |
datacite.awardNumber | 23H00350 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H01500/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H00439/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-23H00350/ | - |
dc.identifier.eissn | 2045-2322 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 肥育牛の血中ビタミンAセンサの開発ならびに地域戦略に基づく精密管理 | ja |
jpcoar.awardTitle | 肥育牛の肉体的・精神的健康を目指す多様なセンサ群の開発とスマート畜産の先導 | ja |
jpcoar.awardTitle | 次世代の地域ブランド牛創出のための精密健康管理と持続的肥育 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス