このアイテムのアクセス数: 38
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2024-05.pdf | 9.49 MB | Adobe PDF | 見る/開く |
タイトル: | Birational classification for algebraic tori |
著者: | Hoshi, Akinari |
著者名の別形: | 星, 明考 |
発行日: | Jan-2025 |
出版者: | 京都大学数理解析研究所 |
誌名: | 代数幾何学シンポジウム記録 |
巻: | 2024 |
開始ページ: | 48 |
終了ページ: | 70 |
抄録: | We give a stably birational classification for algebraic 𝓀-tori of dimensions 3 and 4 over a field 𝓀. Kunyavskii [Kun90] proved that there exist 15 not stably 𝓀-rational cases among 73 cases of algebraic 𝓀-tori of dimension 3. Hoshi and Yamasaki [HY17] showed that there exist exactly 487 (resp. 7, resp. 216) stably 𝓀-rational (resp. not stably but retract 𝓀-rational, resp. not retract 𝓀-rational) cases of algebraic 𝓀-tori of dimension 4. First, we define the weak stably 𝓀-equivalence of algebraic 𝓀-tori and show that there exist 13 (resp. 128) weak stably 𝓀-equivalent classes of algebraic 𝓀-tori T of dimension 3 (resp. 4) which are not stably 𝓀-rational by computing some cohomological stably birational invariants, e.g. the Brauer-Grothendieck group of 𝘟 where 𝘟 is a smooth 𝓀-compactification of 𝘛, provided by Kunyavskii, Skorobogatov and Tsfasman [KST89]. We make a procedure to compute such stably birational invariants effectively and the computations are done by using the computer algebra system GAP. Second, we define the 𝘱-part of the flabby class [[T]]ᶠˡ as a ℤₚ[𝒮𝓎ₚ(𝘎)]-lattice and prove that they are faithful and indecomposable ℤₚ[𝒮𝓎ₚ(𝘎)]-lattices unless it vanishes for 𝘱 = 2 (resp. 𝘱 = 2, 3) in dimension 3 (resp. 4). The ℤₚ-ranks of them are also given. Third, we give a necessary and sufficient condition for which two not stably 𝓀-rational algebraic k-tori 𝘛 and 𝘛′ of dimensions 3 (resp. 4) are stably birationally 𝓀-equivalent in terms of the splitting fields and the weak stably 𝓀-equivalent classes of 𝘛 and 𝘛′. In particular, the splitting fields of them should coincide if [T] and [T]′ are indecomposable. Forth, for each 7 cases of not stably but retract 𝓀-rational algebraic 𝓀-tori of dimension 4, we find an algebraic 𝓀-torus 𝘛′ of dimension 4 which satisfies that 𝘛×[𝓀]𝘛′ is stably 𝓀-rational. Finally, we give a criteria to determine whether two algebraic 𝓀-tori 𝘛 and 𝘛′ of general dimensions are stably birationally 𝓀-equivalent when 𝘛 (resp. 𝘛′) is stably birationally 𝓀-equivalent to some algebraic 𝓀-torus T″ of dimension up to 4. This is a joint work with Aiichi Yamasaki (arXiv: 2112.02280). |
記述: | 於 京都大学理学研究科セミナーハウス (2024年10月22日-10月25日) 2024年度科学研究費補助金 基盤研究(A)(課題番号 20H00111, 代表 小木曽啓示) 2024年度科学研究費補助金 基盤研究(A)(課題番号 21H04429, 代表 並河良典) Date : October 22nd - 25th, 2024 Location: Kyoto University (North Campus), Science Seminar House JSPS KAKENHI Grant-in-Aid (A) 20H00111 (Keiji Oguiso) JSPS KAKENHI Grant-in-Aid (A) 21H04429 (Yoshinori Namikawa) Organizers: Yohsuke Matsuzawa, Yusuke Nakamura, Kazuhiko Yamaki |
URI: | http://hdl.handle.net/2433/292379 |
関連リンク: | https://sites.google.com/view/kinosaki2024/ |
出現コレクション: | 2024 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。