このアイテムのアクセス数: 19

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2024-10.pdf2.7 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorOkuyama, Yûsukeen
dc.contributor.alternative奥山, 裕介ja
dc.date.accessioned2025-03-12T00:41:15Z-
dc.date.available2025-03-12T00:41:15Z-
dc.date.issued2025-01-
dc.identifier.urihttp://hdl.handle.net/2433/292384-
dc.description於 京都大学理学研究科セミナーハウス (2024年10月22日-10月25日)ja
dc.description2024年度科学研究費補助金 基盤研究(A)(課題番号 20H00111, 代表 小木曽啓示)ja
dc.description2024年度科学研究費補助金 基盤研究(A)(課題番号 21H04429, 代表 並河良典)ja
dc.descriptionDate : October 22nd - 25th, 2024en
dc.descriptionLocation: Kyoto University (North Campus), Science Seminar Houseen
dc.descriptionJSPS KAKENHI Grant-in-Aid (A) 20H00111 (Keiji Oguiso)en
dc.descriptionJSPS KAKENHI Grant-in-Aid (A) 21H04429 (Yoshinori Namikawa)en
dc.descriptionOrganizers: Yohsuke Matsuzawa, Yusuke Nakamura, Kazuhiko Yamakien
dc.description.abstractLet φ be a rational function (of degree more than 1) on the projective line ℙ¹ over an algebraically closed and complete non-trivial and non-archimedean valued field 𝘒, which is an endomorphism of ℙ¹. The degree of the reduction of φ modulo the maximal ideal in the ring of 𝘒-integers is less than or equal to that of φ, and we say φ has a good reduction if the equality holds. A conjugacy of φ under some projective transformation of ℙ¹ can have a good reduction even if so does not φ. The minimal resultant locus for φ is a dynamical equivariant which measures how far φ is from having a good reduction, up to conjugations of it under projective transformations. In this talk, after reviewing the foundational moduli theoretic works by Rumely, Szpiro-Tepper-Williams, Silverman, ... on the minimal resultant locus (to characterize the minimum resultant locus as the potential GIT-semistable locus), we introduce the hyperbolic resultant function for φ on the Berkovich projective line over 𝘒 and the intrinsic depths of the intrinsic reduction of φ at each point of the Berkovich projective line. The main result is the moduli theoretic characterization of the minimal resultant locus of φ using the Berkovich hyperbolic geometry.en
dc.language.isojpn-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc411.8-
dc.titleMinimal resultant locus and its moduli theoretic characterization in non-archimedean dynamicsen
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidBD10745793-
dc.identifier.jtitle代数幾何学シンポジウム記録ja
dc.identifier.volume2024-
dc.identifier.spage107-
dc.identifier.epage111-
dc.textversionpublisher-
dc.sortkey10-
dc.addressDIVISION OF MATHEMATICS, KYOTO INSTITUTE OF TECHNOLOGYen
dc.address.alternative京都工芸繊維大学ja
dc.relation.urlhttps://sites.google.com/view/kinosaki2024/-
dcterms.accessRightsopen access-
datacite.awardNumber20H00111-
datacite.awardNumber21H04429-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-20H00111/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-21H04429/-
dc.relation.isIdenticalToBD10745793-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle代数多様体の自己写像に関する多角的研究ja
jpcoar.awardTitleシンプレクティック代数幾何とモジュライ空間ja
出現コレクション:2024

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。