このアイテムのアクセス数: 23
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2279-07.pdf | 9.73 MB | Adobe PDF | 見る/開く |
タイトル: | Holographic and symmetry breaking operators of holomorphic discrete series representations for real rank 3 cases (Recent Developments in Representation Theory and Related Topics) |
著者: | Nakahama, Ryosuke |
著者名の別形: | 中濱, 良祐 |
キーワード: | 22E45 43A85 17C30 holomorphic discrete series representations branching laws intertwining operators |
発行日: | Apr-2024 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2279 |
開始ページ: | 71 |
終了ページ: | 85 |
抄録: | Let (𝐺, ([σ]𝐺)₀) be a symmetric pair of holomorphic type, and let [Hλ](𝐷) be a holomorphic discrete series representation of scalar type of 𝐺. Then the restriction [Hλ](𝐷)l([Gσ])₀ is decomposed multiplicity-freely into the Hilbert direct sum of countable holomorphic discrete series representations, and its branching law is given explicitly by the Hua-Kostant-Schmid-Kobayashi formula. Especially, there exist uniquely (up to constant multiple) the ([σ]𝐺)₀-intertwining operators (holographic operator, symmetry breaking operator) between [Hλ](𝐷)l([Gσ])₀ and each irreducible subrepresentation of ([σ]𝐺)₀. In this article, we treat the results on explicit construction of all intertwining operators for [Hλ](𝐷)l([Gσ])₀ when 𝐺 and the associated symmetric subgroup ([σ]𝐺ᶿ)₀ are both of real rank 3, of tube type and their noncompact parts are simple. |
URI: | http://hdl.handle.net/2433/292608 |
関連リンク: | https://sites.google.com/view/hyougenron2023/%E3%83%9B%E3%83%BC%E3%83%A0 |
出現コレクション: | 2279 表現論とその周辺分野における最近の進展 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。