このアイテムのアクセス数: 20

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B96-02.pdf151.05 kBAdobe PDF見る/開く
タイトル: The Volterra lattice, Abel's equation of the first kind, and the SIR epidemic models (Recent developments in mathematics of integrable systems)
著者: Nobe, Atsushi
著者名の別形: 野邊, 厚
キーワード: 14H70
37J70
37K60
Volterra lattice
Abel's equation of the first kind
SIR model
Poisson manifold
Hamiltonian flow
Lambert W function
発行日: Jul-2024
出版者: Research Institute for Mathematical Sciences, Kyoto University
誌名: 数理解析研究所講究録別冊
巻: B96
開始ページ: 11
終了ページ: 33
抄録: The Volterra lattice, when imposing non-zero constant boundary values, admits the structure of a completely integrable Hamiltonian system if the system size is sufficiently small. Such a Volterra lattice can be regarded as an epidemic model known as the SIR model with vaccination, which extends the celebrated SIR model to account for vaccination. Upon the introduction of an appropriate variable transformation, the SIR model with vaccination reduces to an Abel equation of the first kind, which corresponds to an exact differential equation. The equipotential curve of the exact differential equation is the Lambert curve. Thus, the general solution to the initial value problem of the SIR model with vaccination, or the Volterra lattice with constant boundary values, is implicitly provided by using the Lambert W function.
著作権等: © 2024 by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. All rights reserved. Printed in Japan.
URI: http://hdl.handle.net/2433/293095
出現コレクション:B96 Recent developments in mathematics of integrable systems

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。