このアイテムのアクセス数: 9
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
18824889.2023.2279338.pdf | 1.4 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Hirai, Toshiya | en |
dc.contributor.author | Shiga, Yuki | en |
dc.contributor.author | Shimizu, Mitsuru | en |
dc.contributor.author | Imura, Eiji | en |
dc.contributor.author | Kano, Manabu | en |
dc.contributor.alternative | 加納, 学 | ja |
dc.date.accessioned | 2025-05-07T06:43:16Z | - |
dc.date.available | 2025-05-07T06:43:16Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://hdl.handle.net/2433/293780 | - |
dc.description.abstract | As semiconductor design rules evolve, the required level of reliability for semiconductor processing equipment is increasing. It is impossible to detect anomalies simply by checking a single factor, the oxygen concentration, which is the most important indicator of the equipment performance. We extracted 16 features from the behaviour of oxygen concentration and pressure in the load area, and built univariate and multivariate models by using logistic regression with these features. The proposed method was able to detect anomalous equipment that could not be detected by monitoring only the oxygen concentration, and greatly shortened the processing lead time including adjustment. | en |
dc.language.iso | eng | - |
dc.publisher | Taylor & Francis | en |
dc.rights | © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. | en |
dc.rights | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Semiconductor | en |
dc.subject | process equipment | en |
dc.subject | deposition | en |
dc.subject | cluster analysis | en |
dc.subject | anomaly detection | en |
dc.title | Anomaly detection of semiconductor processing equipment using equipment behaviour | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | SICE Journal of Control, Measurement, and System Integration | en |
dc.identifier.volume | 16 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 332 | - |
dc.identifier.epage | 337 | - |
dc.relation.doi | 10.1080/18824889.2023.2279338 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
dc.identifier.pissn | 1882-4889 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス