このアイテムのアクセス数: 8

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
14686996.2022.2062576.pdf22.09 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAgo, Hirokien
dc.contributor.authorOkada, Susumuen
dc.contributor.authorMiyata, Yasumitsuen
dc.contributor.authorMatsuda, Kazunarien
dc.contributor.authorKoshino, Mikitoen
dc.contributor.authorUeno, Koseien
dc.contributor.authorNagashio, Kosukeen
dc.contributor.alternative松田, 一成ja
dc.date.accessioned2025-05-07T07:20:00Z-
dc.date.available2025-05-07T07:20:00Z-
dc.date.issued2022-12-
dc.identifier.urihttp://hdl.handle.net/2433/293785-
dc.description.abstractThe past decades of materials science discoveries are the basis of our present society – from the foundation of semiconductor devices to the recent development of internet of things (IoT) technologies. These materials science developments have depended mainly on control of rigid chemical bonds, such as covalent and ionic bonds, in organic molecules and polymers, inorganic crystals and thin films. The recent discovery of graphene and other two-dimensional (2D) materials offers a novel approach to synthesizing materials by controlling their weak out-of-plane van der Waals (vdW) interactions. Artificial stacks of different types of 2D materials are a novel concept in materials synthesis, with the stacks not limited by rigid chemical bonds nor by lattice constants. This offers plenty of opportunities to explore new physics, chemistry, and engineering. An often-overlooked characteristic of vdW stacks is the well-defined 2D nanospace between the layers, which provides unique physical phenomena and a rich field for synthesis of novel materials. Applying the science of intercalation compounds to 2D materials provides new insights and expectations about the use of the vdW nanospace. We call this nascent field of science ‘2.5 dimensional (2.5D) materials, ’ to acknowledge the important extra degree of freedom beyond 2D materials. 2.5D materials not only offer a new field of scientific research, but also contribute to the development of practical applications, and will lead to future social innovation. In this paper, we introduce the new scientific concept of this science of ‘2.5D materials’ and review recent research developments based on this new scientific concept.en
dc.language.isoeng-
dc.publisherTaylor & Francisen
dc.rights© 2022 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.en
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subject2.5 dimensional materialsen
dc.subject2D heterostructuresen
dc.subjectvan der Waals interactionen
dc.subjectmoiré superlatticeen
dc.subjectinterlayer nanospaceen
dc.subjectintercalationen
dc.subjectbilayer grapheneen
dc.subjecttransition metal dichalcogenideen
dc.subjecthexagonal boron nitrideen
dc.subjectmultidimensional materialsen
dc.titleScience of 2.5 dimensional materials: paradigm shift of materials science toward future social innovationen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleScience and Technology of Advanced Materialsen
dc.identifier.volume23-
dc.identifier.issue1-
dc.identifier.spage275-
dc.identifier.epage299-
dc.relation.doi10.1080/14686996.2022.2062576-
dc.textversionpublisher-
dc.identifier.pmid35557511-
dcterms.accessRightsopen access-
dc.identifier.pissn1468-6996-
dc.identifier.eissn1878-5514-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons