このアイテムのアクセス数: 9
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2285-09.pdf | 8.8 MB | Adobe PDF | 見る/開く |
タイトル: | TOWARDS A CLASSIFICATION OF REGULAR SEQUENCES (Analytic Number Theory and Related Topics) |
著者: | Coons, Michael |
発行日: | Jun-2024 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2285 |
開始ページ: | 67 |
終了ページ: | 74 |
抄録: | In the mid-2000s, Adamczewski and Buguead proved the CobhamLoxton-van der Poorten conjecture by using the subspace theorem to show that any automatic number (a number whose base expansion is given by an automatic sequence) is either rational or transcendental. About 10 years later, again using the subspace theorem, Bell, Bugeaud, and Coons, extended this result to regular sequences-the (possibly unbounded) generalization of automatic sequences. In this survey, we discuss a further characterization of regular sequences by defining an associated measure, the so-called ghost measure, which is governed by the underlying properties of a related finite set of matrices. |
URI: | http://hdl.handle.net/2433/294379 |
出現コレクション: | 2285 解析的整数論とその周辺 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。