このアイテムのアクセス数: 0
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.actamat.2024.120208.pdf | 15.95 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Sumigawa, Takashi | en |
dc.contributor.author | Kawakatsu, Nobutaka | en |
dc.contributor.author | Tobise, Akihiro | en |
dc.contributor.author | Sugisaka, Kota | en |
dc.contributor.author | Takahashi, Yoshimasa | en |
dc.contributor.author | Arai, Shigeo | en |
dc.contributor.author | Abe, Masataka | en |
dc.contributor.author | Shima, Hiroyuki | en |
dc.contributor.author | Umeno, Yoshitaka | en |
dc.contributor.alternative | 澄川, 貴志 | ja |
dc.contributor.alternative | 杉坂, 浩太 | ja |
dc.contributor.alternative | 安部, 正高 | ja |
dc.date.accessioned | 2025-06-23T01:39:52Z | - |
dc.date.available | 2025-06-23T01:39:52Z | - |
dc.date.issued | 2024-09-15 | - |
dc.identifier.uri | http://hdl.handle.net/2433/294784 | - |
dc.description.abstract | The strength and deformation characteristics of micron-sized metals under monotonic loading have long been investigated. In contrast, despite its practical significance, their fatigue behavior remains unexplored. To this end, tension–compression fatigue tests were conducted herein on micron-sized Ni single crystals to elucidate their fatigue behavior and internal dislocation structures. Specimens with square cross sections of 5 and 2 μm on a side were prepared and subjected to cyclic loading at low stress amplitudes, which did not induce fatigue cracking in bulk metals. Remarkably, fatigue cracks were not present in 5-μm-wide specimens, whereas intrusions/extrusions were observed in 2-μm-wide specimens, leading to crack initiation. Vein-like structures comprising edge dislocations were observed in 5-μm-wide specimens, which are commonly observed in bulk metals. Conversely, the dislocation structure in 2-μm-wide specimens resembled that associated with persistent slip bands, which cause intrusions/extrusions and fatigue cracking in bulk metals under high stress amplitudes. The experimental findings indicate that the fatigue behavior of small-sized metal single crystals is characterized by the absence of vein formation.The strength and deformation characteristics of micron-sized metals under monotonic loading have long been investigated. In contrast, despite its practical significance, their fatigue behavior remains unexplored. To this end, tension–compression fatigue tests were conducted herein on micron-sized Ni single crystals to elucidate their fatigue behavior and internal dislocation structures. Specimens with square cross sections of 5 and 2 μm on a side were prepared and subjected to cyclic loading at low stress amplitudes, which did not induce fatigue cracking in bulk metals. Remarkably, fatigue cracks were not present in 5-μm-wide specimens, whereas intrusions/extrusions were observed in 2-μm-wide specimens, leading to crack initiation. Vein-like structures comprising edge dislocations were observed in 5-μm-wide specimens, which are commonly observed in bulk metals. Conversely, the dislocation structure in 2-μm-wide specimens resembled that associated with persistent slip bands, which cause intrusions/extrusions and fatigue cracking in bulk metals under high stress amplitudes. The experimental findings indicate that the fatigue behavior of small-sized metal single crystals is characterized by the absence of vein formation. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.publisher | Acta Materialia Inc | en |
dc.rights | © 2024 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. | en |
dc.rights | This is an open access article under the CC BY license. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Micron scale | en |
dc.subject | Fatigue | en |
dc.subject | Dislocation | en |
dc.subject | Cyclic loading | en |
dc.subject | Single crystal | en |
dc.title | Dislocation structures in micron-sized Ni single crystals produced via tension–compression cyclic loading | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Acta Materialia | en |
dc.identifier.volume | 277 | - |
dc.relation.doi | 10.1016/j.actamat.2024.120208 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 120208 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 20K20963 | - |
datacite.awardNumber | 22K18754 | - |
datacite.awardNumber | 24H00283 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K20963/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K18754/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-24H00283/ | - |
dc.identifier.pissn | 1359-6454 | - |
dc.identifier.eissn | 1873-2453 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 集団転位構造制御設計基盤の構築とナノマルチフィジックスネットワークの創出 | ja |
jpcoar.awardTitle | 自己組織化転位構造の力学制御による可逆塑性しなやか金属の実現 | ja |
jpcoar.awardTitle | 幾何学的集団欠陥構造を支配する複雑系ナノ力学の解明と新奇機能材料の創製 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス