このアイテムのアクセス数: 0

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.actamat.2024.120208.pdf15.95 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSumigawa, Takashien
dc.contributor.authorKawakatsu, Nobutakaen
dc.contributor.authorTobise, Akihiroen
dc.contributor.authorSugisaka, Kotaen
dc.contributor.authorTakahashi, Yoshimasaen
dc.contributor.authorArai, Shigeoen
dc.contributor.authorAbe, Masatakaen
dc.contributor.authorShima, Hiroyukien
dc.contributor.authorUmeno, Yoshitakaen
dc.contributor.alternative澄川, 貴志ja
dc.contributor.alternative杉坂, 浩太ja
dc.contributor.alternative安部, 正高ja
dc.date.accessioned2025-06-23T01:39:52Z-
dc.date.available2025-06-23T01:39:52Z-
dc.date.issued2024-09-15-
dc.identifier.urihttp://hdl.handle.net/2433/294784-
dc.description.abstractThe strength and deformation characteristics of micron-sized metals under monotonic loading have long been investigated. In contrast, despite its practical significance, their fatigue behavior remains unexplored. To this end, tension–compression fatigue tests were conducted herein on micron-sized Ni single crystals to elucidate their fatigue behavior and internal dislocation structures. Specimens with square cross sections of 5 and 2 μm on a side were prepared and subjected to cyclic loading at low stress amplitudes, which did not induce fatigue cracking in bulk metals. Remarkably, fatigue cracks were not present in 5-μm-wide specimens, whereas intrusions/extrusions were observed in 2-μm-wide specimens, leading to crack initiation. Vein-like structures comprising edge dislocations were observed in 5-μm-wide specimens, which are commonly observed in bulk metals. Conversely, the dislocation structure in 2-μm-wide specimens resembled that associated with persistent slip bands, which cause intrusions/extrusions and fatigue cracking in bulk metals under high stress amplitudes. The experimental findings indicate that the fatigue behavior of small-sized metal single crystals is characterized by the absence of vein formation.The strength and deformation characteristics of micron-sized metals under monotonic loading have long been investigated. In contrast, despite its practical significance, their fatigue behavior remains unexplored. To this end, tension–compression fatigue tests were conducted herein on micron-sized Ni single crystals to elucidate their fatigue behavior and internal dislocation structures. Specimens with square cross sections of 5 and 2 μm on a side were prepared and subjected to cyclic loading at low stress amplitudes, which did not induce fatigue cracking in bulk metals. Remarkably, fatigue cracks were not present in 5-μm-wide specimens, whereas intrusions/extrusions were observed in 2-μm-wide specimens, leading to crack initiation. Vein-like structures comprising edge dislocations were observed in 5-μm-wide specimens, which are commonly observed in bulk metals. Conversely, the dislocation structure in 2-μm-wide specimens resembled that associated with persistent slip bands, which cause intrusions/extrusions and fatigue cracking in bulk metals under high stress amplitudes. The experimental findings indicate that the fatigue behavior of small-sized metal single crystals is characterized by the absence of vein formation.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.publisherActa Materialia Incen
dc.rights© 2024 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.en
dc.rightsThis is an open access article under the CC BY license.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectMicron scaleen
dc.subjectFatigueen
dc.subjectDislocationen
dc.subjectCyclic loadingen
dc.subjectSingle crystalen
dc.titleDislocation structures in micron-sized Ni single crystals produced via tension–compression cyclic loadingen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleActa Materialiaen
dc.identifier.volume277-
dc.relation.doi10.1016/j.actamat.2024.120208-
dc.textversionpublisher-
dc.identifier.artnum120208-
dcterms.accessRightsopen access-
datacite.awardNumber20K20963-
datacite.awardNumber22K18754-
datacite.awardNumber24H00283-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K20963/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K18754/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-24H00283/-
dc.identifier.pissn1359-6454-
dc.identifier.eissn1873-2453-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle集団転位構造制御設計基盤の構築とナノマルチフィジックスネットワークの創出ja
jpcoar.awardTitle自己組織化転位構造の力学制御による可逆塑性しなやか金属の実現ja
jpcoar.awardTitle幾何学的集団欠陥構造を支配する複雑系ナノ力学の解明と新奇機能材料の創製ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons