このアイテムのアクセス数: 0

このアイテムのファイル:
このアイテムは一定期間後に公開されます。
公開日については,アイテム画面の「著作権等」でご確認ください。
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSugisaka, Kotaen
dc.contributor.authorArai, Shigeoen
dc.contributor.authorAbe, Masatakaen
dc.contributor.authorShima, Hiroyukien
dc.contributor.authorUmeno, Yoshitakaen
dc.contributor.authorSumigawa, Takashien
dc.contributor.alternative杉坂, 浩太ja
dc.contributor.alternative安部, 正高ja
dc.contributor.alternative澄川, 貴志ja
dc.date.accessioned2025-06-23T02:05:19Z-
dc.date.available2025-06-23T02:05:19Z-
dc.date.issued2025-10-
dc.identifier.urihttp://hdl.handle.net/2433/294786-
dc.description.abstractIn single crystal metals, the threshold for fatigue crack initiation generally exceeds the critical resolved shear stress (τCRSS) determined from unidirectional loading tests. In contrast, at the micron-scale, it has been reported that fatigue cracks initiate at stress amplitudes below the τCRSS, and this reversal phenomenon might be attributed to differences in testing methodologies employed in various research groups. In this study, tensile tests and tension-compression cyclic loading tests were performed on 2 μm-wide nickel (Ni) single crystals using the same experimental setup. The τCRSS obtained from the tensile tests was approximately 20 times higher than that of the bulk counterpart. During the initial stages of cyclic loading at a stress amplitude approximately half of the τCRSS, the dislocation density increased progressively with the number of cycles without accompanying macroscopic plastic deformation, indicating that τCRSS provides a threshold at which dislocations multiply rapidly over wide regions under unidirectional loading, and that dislocations move at lower stresses and can multiply under cyclic loading. Subsequently, localized slip and crack-like intrusion formed on the surface in association with development of self-organized ladder-like dislocation structures. This sequence of processes was comparable to the early stage of fatigue crack initiation observed in bulk Ni. Unlike bulk materials, ladder-like dislocation structures and intrusion/extrusion appeared without the formation of veins, which are stable self-organized dislocation structures. The findings of this study represent a significant advancement in our understanding of the fatigue behavior of micron-sized single crystal metals.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.en
dc.rightsThe full-text file will be made open to the public on 1 October 2027 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectMicromechanicsen
dc.subjectFatigueen
dc.subjectDislocationen
dc.subjectYield pointen
dc.subjectSingle crystalen
dc.subjectNickelen
dc.titleEvolution of fatigue damage and dislocation structures in micron-sized nickel single crystals under low cyclic loadingen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleMaterials Science and Engineering: Aen
dc.identifier.volume942-
dc.relation.doihttps://doi.org/10.1016/j.msea.2025.148685-
dc.textversionauthor-
dc.identifier.artnum148685-
dcterms.accessRightsembargoed access-
datacite.date.available2027-10-01-
datacite.awardNumber25KJ1508-
datacite.awardNumber24H00283-
datacite.awardNumber24K21575-
datacite.awardNumber22K18754-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-25KJ1508/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-24H00283/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-24K21575/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K18754/-
dc.identifier.pissn0921-5093-
dc.identifier.eissn1873-4936-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle繰り返しの力学負荷を利用したナノ --ミクロン材料中の転位構造設計に関する研究ja
jpcoar.awardTitle幾何学的集団欠陥構造を支配する複雑系ナノ力学の解明と新奇機能材料の創製ja
jpcoar.awardTitleナノ構造メタ表面の力学とanti-fatigue表面の創製ja
jpcoar.awardTitle自己組織化転位構造の力学制御による可逆塑性しなやか金属の実現ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons