このアイテムのアクセス数: 161

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
a26b1p38.pdf536.56 kBAdobe PDF見る/開く
タイトル: 水系密度の変化に関する理論的考察
その他のタイトル: INVESTIGATION OF A MATHEMATICAL MODEL ON DRAINAGE DENSITY
著者: 柏谷, 健二  KAKEN_name
奥田, 節夫  KAKEN_name
著者名の別形: KASHIWAYA, Kenji
OKUDA, Setsuo
発行日: 1-Apr-1983
出版者: 京都大学防災研究所
誌名: 京都大学防災研究所年報. B
巻: 26
号: B-1
開始ページ: 445
終了ページ: 457
抄録: A theoretical equation which shows the temporal change of drainage density is ex-pressed as follows;D, (t, T)=-_exp~j3~(v)_dv}(v)/~ ? exp{ 5 j3, (~) d4dvア1/Dswhere Di, (t, T) is the drainage density at time T on the I-th basin or geomorphic surfacewhich was formed at time t: jβi(τ) is the coefficient concerning the process which causesthe development of river at time τ:γi(τ) is the maximum drainage density at time τ andDi is the initial drainage density on the I-th geomorphic surface or basin. The equation isbased on the assumption that drainage density increases with time until it reaches thespecific upper limit, the maximum drainage density, which concerns some physical propertiesof the basin.It is possible to modify the equations into what shows the temporal change of drainagedensities in various basins or on geomorphic surfaces. The equation is;19(1, T)- exP{5>?_dr}5~p?/r?expt5 ~3(~e) d~1 dv +1/Dowith Do the initial drainage density, where it is assumed that the process is single and thephysical properties are not changed in the basins.By employing this equation, we obtain that the influence of the variation in the processto the change of the drainage density becomes smaller with time as the absolute value ofthe function concerning the process becomes larger, if we set the function is expressed asthe non-negative one where periodic variation and invariable term are combined.
URI: http://hdl.handle.net/2433/70548
関連リンク: http://www.dpri.kyoto-u.ac.jp/nenpo/nenpo.html
出現コレクション:No.26 B-1

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。