ダウンロード数: 143
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
978-3-540-69733-6_44.pdf | 250.2 kB | Adobe PDF | 見る/開く |
タイトル: | Covering Directed Graphs by In-Trees (Computing and Combinatorics) |
著者: | Kamiyama, Naoyuki Katoh, Naoki |
著者名の別形: | 加藤, 直樹 |
発行日: | 2008 |
出版者: | Springer |
誌名: | Lecture Notes in Computer Science |
巻: | 5092 |
開始ページ: | 444 |
終了ページ: | 457 |
抄録: | Given a directed graph D = (V, A) with a set of d specified vertices S = {s 1, ..., s d } ⊆ V and a function where ℤ + denotes the set of non-negative integers, we consider the problem which asks whether there exist in-trees denoted by for every i = 1, ..., d such that are rooted at s i , each T i, j spans vertices from which s i is reachable and the union of all arc sets of T i, j for i = 1, ..., d and j = 1, ..., f(s i ) covers A. In this paper, we prove that such set of in-trees covering A can be found by using an algorithm for the weighted matroid intersection problem in time bounded by a polynomial in and the size of D. Furthermore, for the case where D is acyclic, we present another characterization of the existence of in-trees covering A, and then we prove that in-trees covering A can be computed more efficiently than the general case by finding maximum matchings in a series of bipartite graphs. |
記述: | Computing and Combinatorics : 14th annual international conference, COCOON 2008, Dalian, China, June 27-29, 2008 : (Lecture notes in computer science ; 5092) The 14th Annual International Computing and Combinatorics Conference (COCOON 2008) |
著作権等: | The original publication is available at www.springerlink.com. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/84845 |
DOI(出版社版): | 10.1007/978-3-540-69733-6_44 |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。