ダウンロード数: 548
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.engstruct.2009.09.013.pdf | 587.17 kB | Adobe PDF | 見る/開く |
タイトル: | Critical correlation of bi-directional horizontal ground motions |
著者: | Fujita, Kohei https://orcid.org/0000-0002-4292-6819 (unconfirmed) Takewaki, Izuru https://orcid.org/0000-0002-5673-2409 (unconfirmed) |
著者名の別形: | 竹脇, 出 |
キーワード: | Coherency Critical excitation Cross spectrum Cross-correlation function Multi-component inputs Space frame Stochastic process |
発行日: | Jan-2010 |
出版者: | Elsevier |
誌名: | Engineering Structures |
巻: | 32 |
号: | 1 |
開始ページ: | 261 |
終了ページ: | 272 |
抄録: | A stochastic model is treated of bi-directional horizontal ground motions (2DGM). It is shown that, in comparison with the Penzien–Watabe model (1975) [3], the cross power spectral density (PSD) function between 2DGM along the building structural axes can be treated in a more general manner by using an extended Penzien–Watabe model introduced in this paper. The auto PSD functions of 2DGM along the building structural axes are assumed to be given and the cross PSD function between these 2DGM is treated as a complex unknown function. A critical excitation problem is then considered for a one-story one-span moment resisting three-dimensional frame. The corner-fiber stress at the column-end is taken as the objective function and the worst cross PSD function of the 2DGM is determined so that the maximum corner-fiber stress at the column-end is maximized. It is shown that the real part (co-spectrum) and the imaginary part (quad-spectrum) of the worst cross PSD function can be obtained by a devised algorithm including the interchange of the double maximization procedure in the time and frequency domains. |
著作権等: | c 2009 Elsevier Ltd. All rights reserved. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/88958 |
DOI(出版社版): | 10.1016/j.engstruct.2009.09.013 |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。