1.講究録 = RIMS Kokyuroku

京都大学数理解析研究所講究録
RIMS Kokyuroku

発行: 京都大学数理解析研究所
ISSN: 1880-2818
NCID: AN00061013
収録範囲: 第1巻(1964.10) -

This is a report of research done at Research Institute for Mathematical Sciences, Kyoto University. The papers contained herein are in final form and will not be submitted for publication elsewhere.

  Current Issue         Back Issues      

  


   2282 流体と気体の数学解析   (2024-05  )  

     表紙・目次
    

     Energy conservation in a scaling limit of the 2D filtered-Euler equations (Mathematical Analysis in Fluid and Gas Dynamics)
    Gotoda, Takeshi 
     p.1 -9

     The Hasimoto Transformation for a Finite Length Vortex Filament and its Application (Mathematical Analysis in Fluid and Gas Dynamics)
    Aiki, Masashi 
     p.10 -24

     On stability of Hill's vortex and its applications (Mathematical Analysis in Fluid and Gas Dynamics)
    Choi, Kyudong 
     p.25 -38

     On a two-phase free boundary problem for inhomogeneous incompressible viscous fluids (Mathematical Analysis in Fluid and Gas Dynamics)
    Saito, Hirokazu 
     p.39 -47

     Convergence of approximating solutions of the Navier-Stokes equations (Mathematical Analysis in Fluid and Gas Dynamics)
    Koizumi, Yuta 
     p.48 -54

     Fast rotation limit for the MHD equations in a 3D infinite layer (Mathematical Analysis in Fluid and Gas Dynamics)
    Ohyama, Hiroki      Yoneda, Keiji 
     p.55 -68

     Extended MHD solutions for plasma-vacuum interface that is singularly perturbed by electron inertia (Mathematical Analysis in Fluid and Gas Dynamics)
    Hirota, Makoto 
     p.69 -78

     Convex integration method and non-uniqueness of weak solutions for viscous fluids (Mathematical Analysis in Fluid and Gas Dynamics)
    Li, Yachun      Qu, Peng      Zeng, Zirong      Zhang, Deng 
     p.79 -93

     TWO EXAMPLES OF WELL-POSEDNESS OF WEAK SOLUTIONS FOR QUASILINEAR EVOLUTIONARY PARTIAL DIFFERENTIAL EQUATIONS (Mathematical Analysis in Fluid and Gas Dynamics)
    Liu, Tai-Ping 
     p.94 -103

     Solution to the Boltzmann equation whose Fourier transform are integrable (Mathematical Analysis in Fluid and Gas Dynamics)
    Sakamoto, Shota 
     p.104 -115

     Self-organized aggregation and traveling wave in a kinetic transport model for run-and-tumble bacteria (Mathematical Analysis in Fluid and Gas Dynamics)
    Yasuda, Shugo 
     p.116 -139

     On the energy identity for the full system of compressible Navier-Stokes equations (Mathematical Analysis in Fluid and Gas Dynamics)
    Aoki, Motofumi 
     p.140 -155

     On the Stability of Out-flowing Compressible Viscous Gas (Mathematical Analysis in Fluid and Gas Dynamics)
    Huang, Yucong 
     p.156 -161