このアイテムのアクセス数: 670

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.scitotenv.2018.03.324.pdf1.47 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAraki, Shinen
dc.contributor.authorShima, Masayukien
dc.contributor.authorYamamoto, Kouheien
dc.contributor.alternative山本, 浩平ja
dc.date.accessioned2019-06-25T04:21:53Z-
dc.date.available2019-06-25T04:21:53Z-
dc.date.issued2018-09-01-
dc.identifier.issn0048-9697-
dc.identifier.issn1879-1026-
dc.identifier.urihttp://hdl.handle.net/2433/242227-
dc.description.abstractAdequate spatial and temporal estimates of NO₂ concentrations are essential for proper prenatal exposure assessment. Here, we develop a spatiotemporal land use random forest (LURF) model of the monthly mean NO₂ over four years in a metropolitan area of Japan. The overall objective is to obtain accurate NO₂ estimates for use in prenatal exposure assessments. We use random forests to convey the non-linear relationship between NO₂ concentrations and predictor variables, and compare the prediction accuracy with that of a linear regression. In addition, we include the distance decay effect of emission sources on NO₂ concentrations for more efficient model construction. The prediction accuracy of the LURF model is evaluated through a leave-one-monitor-out cross validation. We obtain a high R² value of 0.79, which is better than that of the conventional land use regression model using linear regression (R² of 0.73). We also evaluate the LURF model via a temporal and overall cross validation and obtain R² values of 0.84 and 0.92, respectively. We successfully integrate temporal and spatial components into our model, which exhibits higher accuracy than spatial models constructed individually for each month. Our findings illustrate the advantage of using a LURF to model the spatiotemporal variability of NO₂ concentrations.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.rightsThe full-text file will be made open to the public on 1 September 2020 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.subjectAir pollutionen
dc.subjectMachine learningen
dc.subjectDistance decay effecten
dc.subjectPrenatal exposureen
dc.subjectLand use regressionen
dc.titleSpatiotemporal land use random forest model for estimating metropolitan NO₂ exposure in Japanen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA00836666-
dc.identifier.jtitleScience of The Total Environmenten
dc.identifier.volume634-
dc.identifier.spage1269-
dc.identifier.epage1277-
dc.relation.doi10.1016/j.scitotenv.2018.03.324-
dc.textversionauthor-
dc.addressGraduate School of Engineering, Osaka Universityen
dc.addressDepartment of Public Health, Hyogo College of Medicineen
dc.addressGraduate School of Energy Science, Kyoto Universityen
dc.identifier.pmid29710628-
dcterms.accessRightsopen access-
datacite.date.available2020-09-01-
datacite.awardNumber15H04790-
dc.identifier.pissn0048-9697-
dc.identifier.eissn1879-1026-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。