このアイテムのアクセス数: 100
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2131-21.pdf | 277.86 kB | Adobe PDF | 見る/開く |
タイトル: | ASYMPTOTICS FOR HIGHER DERIVATIVES OF THE LERCH ZETA-FUNCTION: APPLICATIONS TO THE FORMULAE OF KUMMER, LERCH AND GAUSS (Analytic Number Theory and Related Topics) |
著者: | KATSURADA, MASANORI |
著者名の別形: | 桂田, 昌紀 |
キーワード: | 11M35 33B15 Lerch zeta-function Hurwitz zeta-function log-gamma function di-gamma function Deninger's function higher derivative Mellin-Barnes integral asymptotic expansion Fourier series |
発行日: | Oct-2019 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2131 |
開始ページ: | 166 |
終了ページ: | 176 |
抄録: | Let s be a complex variables, z a complex parameter, and a and λ real parameters with a > 0, and write e(s) = e2πis. The Lerch zeta-function φ(s, a, λ) is defined by the Dirichlet series Σ∞ l=0 e(λl)(a + l)−s (Res > 1), and its meromorphic continuation over the whole s-plane; this reduces to the Hurwitz zeta-function ζ(s, a) if λ is an integer, and further to the Riemann zeta-function ζ(s) = ζ(s, 1). Note that the domain of the parameter a can be extended through the procedure in [13]. Let φ(m)(s, z, λ) = (∂/∂s)mφ(s, z, λ) for m = 0, 1, 2, . . . denote any derivative. The aim of this paper is to show that complete asymptotic expansions exist for φ(m)(s, a + z, λ) (m = 0, 1, . . .) when both z → 0 and z → ∞ through | arg z| < π (Theorems 1 and 2), together with the explicit expressions of their remainders (Corollaries 1.1 and 2.2); these can be applied to deduce the classical Fourier series expansions of the log-gamma function log Γ(s) (Corollary 2.3) and the di-gamma function ψ(s) = (Γ'/Γ)(s) (Corollary 2.4) both for 0 < s < 1, due to Kummer and Lerch, respectively, as well as to deduce the celebrated closed form evaluation of ψ(r) at any rational point r with 0 < r < 1 (Corollary 2.5), due to Gauß. Our results in Theorems 1 and 2 further lead us to define and study a generalization of Deninger's Rm-function (Corollaries 1.4–1.6 and 2.6–2.9), which was first introduced by Deninger [3] for extending the log-gamma function into higher orders. The detailed proofs of our results in the present paper will appear, among other things, in the forthcoming article [21]. |
URI: | http://hdl.handle.net/2433/254778 |
出現コレクション: | 2131 解析的整数論とその周辺 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。