このアイテムのアクセス数: 100

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2131-21.pdf277.86 kBAdobe PDF見る/開く
タイトル: ASYMPTOTICS FOR HIGHER DERIVATIVES OF THE LERCH ZETA-FUNCTION: APPLICATIONS TO THE FORMULAE OF KUMMER, LERCH AND GAUSS (Analytic Number Theory and Related Topics)
著者: KATSURADA, MASANORI
著者名の別形: 桂田, 昌紀
キーワード: 11M35
33B15
Lerch zeta-function
Hurwitz zeta-function
log-gamma function
di-gamma function
Deninger's function
higher derivative
Mellin-Barnes integral
asymptotic expansion
Fourier series
発行日: Oct-2019
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2131
開始ページ: 166
終了ページ: 176
抄録: Let s be a complex variables, z a complex parameter, and a and λ real parameters with a > 0, and write e(s) = e2πis. The Lerch zeta-function φ(s, a, λ) is defined by the Dirichlet series Σ∞ l=0 e(λl)(a + l)−s (Res > 1), and its meromorphic continuation over the whole s-plane; this reduces to the Hurwitz zeta-function ζ(s, a) if λ is an integer, and further to the Riemann zeta-function ζ(s) = ζ(s, 1). Note that the domain of the parameter a can be extended through the procedure in [13]. Let φ(m)(s, z, λ) = (∂/∂s)mφ(s, z, λ) for m = 0, 1, 2, . . . denote any derivative. The aim of this paper is to show that complete asymptotic expansions exist for φ(m)(s, a + z, λ) (m = 0, 1, . . .) when both z → 0 and z → ∞ through | arg z| < π (Theorems 1 and 2), together with the explicit expressions of their remainders (Corollaries 1.1 and 2.2); these can be applied to deduce the classical Fourier series expansions of the log-gamma function log Γ(s) (Corollary 2.3) and the di-gamma function ψ(s) = (Γ'/Γ)(s) (Corollary 2.4) both for 0 < s < 1, due to Kummer and Lerch, respectively, as well as to deduce the celebrated closed form evaluation of ψ(r) at any rational point r with 0 < r < 1 (Corollary 2.5), due to Gauß. Our results in Theorems 1 and 2 further lead us to define and study a generalization of Deninger's Rm-function (Corollaries 1.4–1.6 and 2.6–2.9), which was first introduced by Deninger [3] for extending the log-gamma function into higher orders. The detailed proofs of our results in the present paper will appear, among other things, in the forthcoming article [21].
URI: http://hdl.handle.net/2433/254778
出現コレクション:2131 解析的整数論とその周辺

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。