このアイテムのアクセス数: 296

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B78-07.pdf440.18 kBAdobe PDF見る/開く
タイトル: 超楕円σ関数による戸田格子の周期解と擬周期解について
その他のタイトル: Periodic and quasi-periodic solutions of Toda lattice via hyperelliptic $sigma$ functions (Mathematical structures of integrable systems and their applications)
著者: 松谷, 茂樹  KAKEN_name
著者名の別形: Matsutani, Shigeki
キーワード: 14H55
14H50
14K25
14H40
division point
toda equation
hyperelliptic curve
Abel functions
発行日: Apr-2020
出版者: Research Institute for Mathematical Sciences, Kyoto University
誌名: 数理解析研究所講究録別冊
巻: B78
開始ページ: 155
終了ページ: 178
抄録: In this report, I summarize results in the paper (Kodama, Matsutani, Previato, Ann. Inst. Fourier 63 (2013) 655-688) to pose a problem to give an explicit relation between periodic and quasi-periodic solutions of Toda lattice. For a hyperelliptic curve Xg of genus g, we have a quasi-periodic solution of Toda lattice in terms of the hyperelliptic σ function and its addition theorem. Using the division polynomial of Xg, we find 2N-division points in its Jacobi variety and then have N-periodic solution of Toda-lattice. It is well-known that the N-periodic solution is associated with a hyperellptic curve ˆXg, N-1 of genus N-1 rather than g. However it is not clear how Xg and ˆXg, N-1 are connected geometrically, though the problem is very simple and natural. In this report, after I give a review of the recent development of σ function theory of higher genus and show the summary of our previous work, I give some comments on the problem.
記述: "Mathematical structures of integrable systems and their applications". September 5-7, 2018. edited by Shinsuke Iwao. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.
著作権等: © 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
URI: http://hdl.handle.net/2433/260634
出現コレクション:B78 Mathematical structures of integrable systems and their applications

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。