このアイテムのアクセス数: 202
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s41467-021-24014-x.pdf | 4.17 MB | Adobe PDF | 見る/開く |
タイトル: | Model-based prediction of spatial gene expression via generative linear mapping |
著者: | Okochi, Yasushi Sakaguchi, Shunta Nakae, Ken ![]() Kondo, Takefumi ![]() ![]() Honda, Naoki |
著者名の別形: | 大河内, 康之 坂口, 峻太 中江, 健 近藤, 武史 本田, 直樹 |
キーワード: | Gene expression Machine learning Transcriptomics |
発行日: | 2021 |
出版者: | Springer Nature |
誌名: | Nature Communications |
巻: | 12 |
論文番号: | 3731 |
抄録: | Decoding spatial transcriptomes from single-cell RNA sequencing (scRNA-seq) data has become a fundamental technique for understanding multicellular systems; however, existing computational methods lack both accuracy and biological interpretability due to their model-free frameworks. Here, we introduce Perler, a model-based method to integrate scRNA-seq data with reference in situ hybridization (ISH) data. To calibrate differences between these datasets, we develop a biologically interpretable model that uses generative linear mapping based on a Gaussian mixture model using the Expectation–Maximization algorithm. Perler accurately predicts the spatial gene expression of Drosophila embryos, zebrafish embryos, mammalian liver, and mouse visual cortex from scRNA-seq data. Furthermore, the reconstructed transcriptomes do not over-fit the ISH data and preserved the timing information of the scRNA-seq data. These results demonstrate the generalizability of Perler for dataset integration, thereby providing a biologically interpretable framework for accurate reconstruction of spatial transcriptomes in any multicellular system. |
記述: | 機械学習によってバラバラな細胞たちをパズルのように組み立てる --1細胞計測データからの遺伝子発現マップの高精度予測--. 京都大学プレスリリース. 2021-06-21. |
著作権等: | © The Author(s) 2021 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. |
URI: | http://hdl.handle.net/2433/263916 |
DOI(出版社版): | 10.1038/s41467-021-24014-x |
PubMed ID: | 34140477 |
関連リンク: | https://www.kyoto-u.ac.jp/ja/research-news/2021-06-21 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス