このアイテムのアクセス数: 98
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2188-23.pdf | 2.99 MB | Adobe PDF | 見る/開く |
タイトル: | Deep Learning for Evaluation of Game and Puzzle Positions (Algebraic system, Logic, Language and Related Areas in Computer Sciences II) |
著者: | Wake, Takafumi Okada, Hiromu Jimbo, Shuji |
著者名の別形: | 和氣, 卓史 岡田, 拡 神保, 秀司 |
発行日: | Jul-2021 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2188 |
開始ページ: | 155 |
終了ページ: | 158 |
抄録: | In recent years, it has been demonstrated that a powerful game AI can be implemented in Go with the combination of well-learned neural networks and traditional search algorithms. In this study, we made an equivalent to the policy network in the Go AI for, FreeCell, a solitaire card game, by deep learning. We also made an equivalent to the value network in the Go AI for Pentago, a two-player board game. The network structure, ResNet, was adopted for the above cases of deep learning, and supervised learning was performed with the evaluation values of moves in FreeCell and positions in Pentago as teacher data. It is well-known that ResNet is useful for deep learning with deep convolutional neural networks. |
URI: | http://hdl.handle.net/2433/265629 |
出現コレクション: | 2188 代数系、論理、言語と計算機科学の周辺 II |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。