このアイテムのアクセス数: 200
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B87-06.pdf | 304.74 kB | Adobe PDF | 見る/開く |
タイトル: | 箱玉系と非自励離散戸田格子 (可積分系数理の深化と展開) |
その他のタイトル: | Box-ball system and the nonautonomous discrete Toda lattice (Mathematical structures of integrable systems, its deepening and expansion) |
著者: | 前田, 一貴 ![]() |
著者名の別形: | MAEDA, Kazuki |
キーワード: | 37K10 37B15 42C05 Box-ball systems nonautonomous ultradiscrete Toda lattice biorthogonal polynomials |
発行日: | Aug-2021 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
誌名: | 数理解析研究所講究録別冊 |
巻: | B87 |
開始ページ: | 79 |
終了ページ: | 98 |
抄録: | We discuss the theory of finite orthogonal polynomials based on elementary linear algebra and its connection to the nonautonomous discrete Toda lattice with nonperiodic finite lattice boundary condition. By using the spectral transformation technique for finite orthogonal polynomials, one can give a solution to the initial value problem of the nonautonomous discrete Toda lattice. However, this construction of the solution cannot be ultradiscretized because of so-called “negative problem". In this paper, we focus on the rigged configuration technique to solve the initial value problem of the box-ball system and consider a connection between the rigged configuration and orthogonal polynomials. |
記述: | Mathematical structures of integrable systems, its deepening and expansion. September 9-11, 2019. edited by Takao Suzuki. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. |
著作権等: | © 2021 by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. All rights reserved. |
URI: | http://hdl.handle.net/2433/265829 |
出現コレクション: | B87 Mathematical structures of integrable systems, its deepening and expansion |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。