このアイテムのアクセス数: 52

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.csda.2022.107517.pdf518.28 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHamura, Yasuyukien
dc.contributor.authorIrie, Kaoruen
dc.contributor.authorSugasawa, Shonosukeen
dc.contributor.alternative羽村, 靖之ja
dc.date.accessioned2022-09-16T05:28:22Z-
dc.date.available2022-09-16T05:28:22Z-
dc.date.issued2022-09-
dc.identifier.urihttp://hdl.handle.net/2433/276302-
dc.description.abstractLinear regression that employs the assumption of normality for the error distribution may lead to an undesirable posterior inference of regression coefficients due to potential outliers. A finite mixture of two components, one with thin and one with heavy tails, is considered as the error distribution in this study. For the heavily-tailed component, the novel class of distributions is introduced; their densities are log-regularly varying and have heavier tails than the Cauchy distribution. Yet, they are expressed as a scale mixture of normals which enables the efficient posterior inference when using a Gibbs sampler. The robustness of the posterior distributions is proved under the proposed models using a minimal set of assumptions, which justifies the use of shrinkage priors with unbounded densities for the coefficient vector in the presence of outliers. An extensive comparison with the existing methods via simulation study shows the improved performance of the proposed model in point and interval estimation, as well as its computational efficiency. Further, the posterior robustness of the proposed method is confirmed in an empirical study with shrinkage priors for regression coefficients.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2022. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.en
dc.rightsThe full-text file will be made open to the public on 1 September 2024 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectRobust statisticsen
dc.subjectLinear regressionen
dc.subjectHeavily-tailed distributionen
dc.subjectScale mixture of normalsen
dc.subjectLog-regularly varying densityen
dc.subjectGibbs sampleren
dc.titleLog-regularly varying scale mixture of normals for robust regressionen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleComputational Statistics & Data Analysisen
dc.identifier.volume173-
dc.relation.doi10.1016/j.csda.2022.107517-
dc.textversionauthor-
dc.identifier.artnum107517-
dcterms.accessRightsembargoed access-
datacite.date.available2024-09-01-
datacite.awardNumber20J10427-
datacite.awardNumber17K17659-
datacite.awardNumber18K12757-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20J10427/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17K17659/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18K12757/-
dc.identifier.pissn0167-9473-
dc.identifier.eissn1872-7352-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleガンマ・ポアソンモデルに基づく推測手法の改良ja
jpcoar.awardTitle大規模計数時系列データのベイズ分析ja
jpcoar.awardTitleグループデータ解析の安定化のための統計的方法論ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons