このアイテムのアクセス数: 52
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.csda.2022.107517.pdf | 518.28 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Hamura, Yasuyuki | en |
dc.contributor.author | Irie, Kaoru | en |
dc.contributor.author | Sugasawa, Shonosuke | en |
dc.contributor.alternative | 羽村, 靖之 | ja |
dc.date.accessioned | 2022-09-16T05:28:22Z | - |
dc.date.available | 2022-09-16T05:28:22Z | - |
dc.date.issued | 2022-09 | - |
dc.identifier.uri | http://hdl.handle.net/2433/276302 | - |
dc.description.abstract | Linear regression that employs the assumption of normality for the error distribution may lead to an undesirable posterior inference of regression coefficients due to potential outliers. A finite mixture of two components, one with thin and one with heavy tails, is considered as the error distribution in this study. For the heavily-tailed component, the novel class of distributions is introduced; their densities are log-regularly varying and have heavier tails than the Cauchy distribution. Yet, they are expressed as a scale mixture of normals which enables the efficient posterior inference when using a Gibbs sampler. The robustness of the posterior distributions is proved under the proposed models using a minimal set of assumptions, which justifies the use of shrinkage priors with unbounded densities for the coefficient vector in the presence of outliers. An extensive comparison with the existing methods via simulation study shows the improved performance of the proposed model in point and interval estimation, as well as its computational efficiency. Further, the posterior robustness of the proposed method is confirmed in an empirical study with shrinkage priors for regression coefficients. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2022. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license. | en |
dc.rights | The full-text file will be made open to the public on 1 September 2024 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Robust statistics | en |
dc.subject | Linear regression | en |
dc.subject | Heavily-tailed distribution | en |
dc.subject | Scale mixture of normals | en |
dc.subject | Log-regularly varying density | en |
dc.subject | Gibbs sampler | en |
dc.title | Log-regularly varying scale mixture of normals for robust regression | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Computational Statistics & Data Analysis | en |
dc.identifier.volume | 173 | - |
dc.relation.doi | 10.1016/j.csda.2022.107517 | - |
dc.textversion | author | - |
dc.identifier.artnum | 107517 | - |
dcterms.accessRights | embargoed access | - |
datacite.date.available | 2024-09-01 | - |
datacite.awardNumber | 20J10427 | - |
datacite.awardNumber | 17K17659 | - |
datacite.awardNumber | 18K12757 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20J10427/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17K17659/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18K12757/ | - |
dc.identifier.pissn | 0167-9473 | - |
dc.identifier.eissn | 1872-7352 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | ガンマ・ポアソンモデルに基づく推測手法の改良 | ja |
jpcoar.awardTitle | 大規模計数時系列データのベイズ分析 | ja |
jpcoar.awardTitle | グループデータ解析の安定化のための統計的方法論 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス