このアイテムのアクセス数: 73
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
jnlp.28.751.pdf | 370.1 kB | Adobe PDF | 見る/開く |
タイトル: | Neural Text Generation with Artificial Negative Examples to Address Repeating and Dropping Errors |
著者: | Shirai, Keisuke Hashimoto, Kazuma Eriguchi, Akiko Ninomiya, Takashi Mori, Shinsuke ![]() ![]() |
著者名の別形: | 白井, 圭佑 森, 信介 |
キーワード: | Machine Translation Image Captioning Discriminator Negative Example |
発行日: | 2021 |
出版者: | Association for Natural Language Processing |
誌名: | Journal of Natural Language Processing |
巻: | 28 |
号: | 3 |
開始ページ: | 751 |
終了ページ: | 777 |
抄録: | Neural text generation models that are conditioned on a given input (e.g., machine translation and image captioning) are typically trained through maximum likelihood estimation of the target text. However, models trained in this manner often suffer from various types of errors when making subsequent inferences. In this study, we propose suppressing an arbitrary type of error by training the text generation model in a reinforcement learning framework; herein, we use a trainable reward function that can discriminate between references and sentences, containing the targeted type of errors. We create such negative examples by artificially injecting the targeted errors into the references. In the experiments, we focus on two error types; repeated and dropped tokens in model-generated text. The experimental results demonstrate that our method can suppress generation errors, and achieves significant improvements on two machine translation and two image captioning tasks. |
著作権等: | © 2021 The Association for Natural Language Processing Licensed under CC BY 4.0 |
URI: | http://hdl.handle.net/2433/276420 |
DOI(出版社版): | 10.5715/jnlp.28.751 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス