このアイテムのアクセス数: 114

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
bies.202100118.pdf723.72 kBAdobe PDF見る/開く
タイトル: Cell population‐based framework of genetic epidemiology in the single‐cell omics era
著者: Okada, Daigo
Zheng, Cheng
Cheng, Jian Hao
Yamada, Ryo
著者名の別形: 岡田, 大瑚
鄭, 誠
程, 健豪
山田, 亮
キーワード: genomics
genetics
single cell
transcriptome
epigenome
systems biology
GWAS
発行日: Jan-2022
出版者: Wiley
誌名: BioEssays
巻: 44
号: 1
論文番号: 2100118
抄録: Genetic epidemiology is a rapidly advancing field due to the recent availability of large amounts of omics data. In recent years, it has become possible to obtain omics information at the single-cell level, so genetic epidemiological models need to be updated to integrate with single-cell expression data. In this perspective paper, we propose a cell population-based framework for genetic epidemiology in the single-cell era. In this framework, genetic diversity influences phenotypic diversity through the diversity of cell population profiles, which are defined as high-dimensional probability distributions of the state spaces of biomolecules of each omics layer. We discuss how biomolecular experimental measurement data can capture the different properties of this distribution. In particular, single-cell data constitute a sample from this population distribution where only some coordinate values are observable. From a data analysis standpoint, we introduce methodology for feature extraction from cell population profiles. Finally, we discuss how this framework can be applied not only to genetic epidemiology but also to systems biology.
著作権等: © 2021 Wiley Periodicals LLC
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
URI: http://hdl.handle.net/2433/277759
DOI(出版社版): 10.1002/bies.202100118
PubMed ID: 34821401
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons