ダウンロード数: 81

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.isci.2022.105754.pdf2.58 MBAdobe PDF見る/開く
タイトル: Adaptive discrimination between harmful and harmless antigens in the immune system by predictive coding
著者: Yoshido, Kana
Honda, Naoki
著者名の別形: 吉戸, 香奈
本田, 直樹
キーワード: Immunology
mathematical biosciences
computing methodology
machine learning
発行日: 20-Jan-2023
出版者: Elsevier BV
誌名: iScience
巻: 26
号: 1
論文番号: 105754
抄録: The immune system discriminates between harmful and harmless antigens based on past experiences; however, the underlying mechanism is largely unknown. From the viewpoint of machine learning, the learning system predicts the observation and updates the prediction based on prediction error, a process known as “predictive coding.” Here, we modeled the population dynamics of T cells by adopting the concept of predictive coding; conventional and regulatory T cells predict the antigen concentration and excessive immune response, respectively. Their prediction error signals, possibly via cytokines, induce their differentiation to memory T cells. Through numerical simulations, we found that the immune system identifies antigen risks depending on the concentration and input rapidness of the antigen. Further, our model reproduced history-dependent discrimination, as in allergy onset and subsequent therapy. Taken together, this study provided a novel framework to improve our understanding of how the immune system adaptively learns the risks of diverse antigens.
記述: なぜ免疫系はウイルスを排除して食べ物を排除しないのか? --予測符号化に基づく免疫記憶のアップデート--. 京都大学プレスリリース. 2023-01-12.
著作権等: © 2022 The Author(s).
This is an open access article under the Creative Commons Attribution 4.0 International license.
URI: http://hdl.handle.net/2433/278383
DOI(出版社版): 10.1016/j.isci.2022.105754
PubMed ID: 36594030
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2023-01-12-0
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons