ダウンロード数: 81
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.isci.2022.105754.pdf | 2.58 MB | Adobe PDF | 見る/開く |
タイトル: | Adaptive discrimination between harmful and harmless antigens in the immune system by predictive coding |
著者: | Yoshido, Kana Honda, Naoki |
著者名の別形: | 吉戸, 香奈 本田, 直樹 |
キーワード: | Immunology mathematical biosciences computing methodology machine learning |
発行日: | 20-Jan-2023 |
出版者: | Elsevier BV |
誌名: | iScience |
巻: | 26 |
号: | 1 |
論文番号: | 105754 |
抄録: | The immune system discriminates between harmful and harmless antigens based on past experiences; however, the underlying mechanism is largely unknown. From the viewpoint of machine learning, the learning system predicts the observation and updates the prediction based on prediction error, a process known as “predictive coding.” Here, we modeled the population dynamics of T cells by adopting the concept of predictive coding; conventional and regulatory T cells predict the antigen concentration and excessive immune response, respectively. Their prediction error signals, possibly via cytokines, induce their differentiation to memory T cells. Through numerical simulations, we found that the immune system identifies antigen risks depending on the concentration and input rapidness of the antigen. Further, our model reproduced history-dependent discrimination, as in allergy onset and subsequent therapy. Taken together, this study provided a novel framework to improve our understanding of how the immune system adaptively learns the risks of diverse antigens. |
記述: | なぜ免疫系はウイルスを排除して食べ物を排除しないのか? --予測符号化に基づく免疫記憶のアップデート--. 京都大学プレスリリース. 2023-01-12. |
著作権等: | © 2022 The Author(s). This is an open access article under the Creative Commons Attribution 4.0 International license. |
URI: | http://hdl.handle.net/2433/278383 |
DOI(出版社版): | 10.1016/j.isci.2022.105754 |
PubMed ID: | 36594030 |
関連リンク: | https://www.kyoto-u.ac.jp/ja/research-news/2023-01-12-0 |
出現コレクション: | 学術雑誌掲載論文等 |
このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス